催化燃烧设备原理及催化剂

催化燃烧设备原理及催化剂,催化燃烧废气处理设备的催化燃烧工艺描述,催化燃烧处理废气的核心原理:
1、吸附过程 吸附是气体结合到固体上去的质量传递过程。气体(吸附质)进入固体(吸附剂)的孔隙中但并未进入其晶格内。吸附过程可能是物理过程,也可能是化学过程。
物理吸附主要是范德华引力起作用,一般没有选择性,在吸附过程中没有电子转移,没有化学键的生成与破坏。化学吸附实际上是一种化学反应,具有选择性,在化学吸附过程中,气体和固体表面发生了化学反应。 最普遍使用的吸附剂是活性炭、分子筛、硅胶和活性氧化铝。这些吸附剂经过处理后表面积极大,可有效吸附碳氢化合物等污染物。其缺点是对水有优先选择性吸附作用。所有的吸附剂在一定的高温下会发生变化。在这些温度下,其吸附能力很弱。污染物可以被解脱出来,从而使吸附剂的活性得到再生,这个过程成为脱附。

为了进行连续操作,一般提供两个或多个吸附床。一个或几个吸附床在吸附时,另一个或几个吸附床则进行再生。在吸附过程中,被收集的污染物滞留在吸附床中,只要吸附床有足够的容量,污染物就不会释放出来。但是当吸附床中的污染物浓度达到饱和时,污染物便开始释放出来,这种现象称为穿透。达到饱和的吸附床需要进行再生,一般采用加热的气体对吸附床进行脱附,一方面使吸附床重新具有活性,一方面是污染物被解脱出来进行回收或分解处理。
2、燃烧过程 当气流中的污染物可被氧化时,燃烧是一种彻底的污染控制方案。碳氢化合物就属于这类污染物。燃烧可以分为直接火焰燃烧和催化燃烧两类。燃烧即是在氧和热的作用下将碳氢化合物转化为水和二氧化碳。其反应方程式如下: CnH2m+(n+m/2)O2=nCO2+H2O+Heat 在燃烧过程中,气流量和有机物负荷是选择燃烧技术的重要参数。一个衡量污染物负荷的参数是低爆炸极限(LEL)或低可燃极限(LFL)。
催化燃烧废气处理设备催化剂的重要作用,催化燃烧反应原理是有机废气在较低温度下在催化剂的作用下被完全氧化和分解,达到净化气体目的。催化燃烧是典型的气固相催化反应,其原理是活性氧参与深度氧化作用。在催化燃烧过程中,催化剂的作用是降低反应的活化能,同时使反应物分子富集在催化剂表面上以提高反应速率。借助于催化剂,有机废气可以在较低的起燃温度下无焰燃烧并且释放大量热量,同时氧化分解成CO2和H2O。
1.什么是低温催化剂
低温催化剂性能指标:起燃温度≤200℃,氧化转化效率≥95%,孔密度200-400cpsi,抗压强度≥8MPa。
2.VOCs催化剂在催化燃烧系统中的作用与影响
通常VOCs的自燃烧温度较高,通过催化剂的活化,可降低VOCs燃烧的活化能,从而降低起燃温度,减少能耗,节约成本。
另外:一般(无催化剂存在)的燃烧温度都会在600℃以上,这样的燃烧会产生氮氧化物,就是常说的NOx,这也是要严格控制的污染物。催化燃烧是没有明火的燃烧,一般低于350℃,不会有NOx生成,因此更为安全和环保。

3.废气预处理可延长催化剂和催化燃烧设备的寿命原因分析
废气可能含有一些对催化剂有害成分,如果已知有这样的化学物质存在,则要对废气做预处理,否则这些有害成分会对催化剂的寿命产生很大影响。
废气应经过预处理(除尘除油除湿)再通入催化仓。灰尘、积碳及高沸粘性物附着于催化剂表面,覆盖催化剂活性位点,会导致催化剂催化作用,因此,应尽量避免灰尘及高沸粘性物的引入。
较高湿度环境中,水蒸气和油雾漆雾在高温下容易与催化剂发生作用,造成催化剂烧结失活,因此应尽量减少水蒸气和油雾漆雾进入催化剂床层。
4.催化燃烧系统废气浓度控制的重要性
合适的废气浓度可以保证催化燃烧系统安全高效的处理废气,同时有利于延长设备和催化剂的使用寿命。
浓度过低:大量的能量用于加热空气,能耗高,反应放热不足以维持系统的自热燃烧,这种工况建议对废气进行浓缩。
浓度过高:燃爆风险;温升过高,燃烧温度过高(长时间高于600度),对设备和催化剂都有伤害,这种工况建议加新风稀释废气至爆炸下限以下。


