欢迎光临散文网 会员登陆 & 注册

先翻译条件再证明(2021新高考Ⅱ圆锥曲线)

2022-08-02 12:35 作者:数学老顽童  | 我要投稿

(2021新高考Ⅱ,20)已知椭圆C的方程为%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0),右焦点为F%5Cleft(%20%5Csqrt%7B2%7D%2C0%20%5Cright)%20,且离心率为%5Cfrac%7B%5Csqrt%7B6%7D%7D%7B3%7D.

(1)求椭圆C的方程;

(2)设MNC上的两点,直线MN与曲线x%5E2%2By%5E2%3Db%5E2x%3E0)相切,证明:MNF三点共线的充要条件是%5Cleft%7C%20MN%20%5Cright%7C%3D%5Csqrt%7B3%7D.

解:由题可知c%3D%5Csqrt%7B2%7D,且%5Cfrac%7Bc%7D%7Ba%7D%3D%5Cfrac%7B%5Csqrt%7B6%7D%7D%7B3%7D

解得a%3D%5Csqrt%7B3%7D

所以b%5E2%3Da%5E2-c%5E2%3D3-2%3D1

所以椭圆C的方程为%5Cfrac%7Bx%5E2%7D%7B3%7D%2By%5E2%3D1.

(2)先画图

设直线MN的方程为x%3Dmy%2Bt

x-my-t%3D0

因为直线MN与曲线x%5E2%2By%5E2%3D1x%3E0)相切,

所以%5Cfrac%7B%5Cleft%7C%200-m%5Ccdot%200-t%20%5Cright%7C%7D%7B%5Csqrt%7B1%5E2%2B%5Cleft(%20-m%20%5Cright)%20%5E2%7D%7D%3D1

整理得m%5E2%3Dt%5E2-1.

联立椭圆C与直线MN的方程,得

%5Cleft(%20m%5E2%2B3%20%5Cright)%20y%5E2%2B2mty%2Bt%5E2-3%3D0

所以

y_1%2By_2%3D%5Cfrac%7B-2mt%7D%7Bm%5E2%2B3%7D

y_1y_2%3D%5Cfrac%7Bt%5E2-3%7D%7Bm%5E2%2B3%7D.

所以

%5Cbegin%7Baligned%7D%09%5Cleft%7C%20MN%20%5Cright%7C%26%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Csqrt%7B%5Cleft(%20y_1%2By_2%20%5Cright)%20%5E2-4y_1y_2%7D%5C%5C%09%26%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Csqrt%7B%5Cleft(%20%5Cfrac%7B-2mt%7D%7Bm%5E2%2B3%7D%20%5Cright)%20%5E2-4%5Ccdot%20%5Cfrac%7Bt%5E2-3%7D%7Bm%5E2%2B3%7D%7D%5C%5C%09%26%3D%5Cfrac%7B2%5Csqrt%7B3%7D%5Ccdot%20%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Csqrt%7Bm%5E2-t%5E2%2B3%7D%7D%7Bm%5E2%2B3%7D%5C%5C%09%26%3D%5Cfrac%7B2%5Csqrt%7B3%7D%5Ccdot%20%5Csqrt%7Bt%5E2-1%2B1%7D%5Ccdot%20%5Csqrt%7Bt%5E2-1-t%5E2%2B3%7D%7D%7Bt%5E2-1%2B3%7D%5C%5C%09%26%3D%5Cfrac%7B2%5Csqrt%7B6%7Dt%7D%7Bt%5E2%2B2%7D%5C%5C%5Cend%7Baligned%7D

先证充分性

%5Cleft%7C%20MN%20%5Cright%7C%3D%5Csqrt%7B3%7D

%5Cfrac%7B2%5Csqrt%7B6%7Dt%7D%7Bt%5E2%2B2%7D%3D%5Csqrt%7B3%7D

整理得t%5E2-2%5Csqrt%7B2%7Dt%2B2%3D0

解得t%3D%5Csqrt%7B2%7D,或t%3D-%5Csqrt%7B2%7D(舍)

所以直线MN的方程为x%3Dmy%2B%5Csqrt%7B2%7D%20

易知其过点F%5Cleft(%20%5Csqrt%7B2%7D%2C0%20%5Cright)%20

MNF三点共线.


再证必要性

MNF三点共线,

则直线MN过点F%5Cleft(%20%5Csqrt%7B2%7D%2C0%20%5Cright)%20

%5Csqrt%7B2%7D%3Dm%5Ccdot%200%2Bt

解得t%3D%5Csqrt%7B2%7D,所以

%5Cleft%7C%20MN%20%5Cright%7C%3D%5Cfrac%7B2%5Csqrt%7B6%7Dt%7D%7Bt%5E2%2B2%7D%3D%5Cfrac%7B2%5Csqrt%7B6%7D%5Ctimes%20%5Csqrt%7B2%7D%7D%7B%5Cleft(%20%5Csqrt%7B2%7D%20%5Cright)%20%5E2%2B2%7D%3D%5Csqrt%7B3%7D.

命题得证.

先翻译条件再证明(2021新高考Ⅱ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律