功率因数校正(PFC)

功率因数定义为设备能够传输到输出端的能量与其从输入电源处获取的总能量之比。它是电子设备设计的关键绩效指标,很多国家和国际组织都为此制定了相应的法规。例如欧盟定义了设备必须具备的最小功率因数或最大谐波水平,满足其标准才能在欧洲市场进行销售。
这些组织之所以如此关注功率因数的提高,是因为劣质电源对电网会产生实际的威胁,它们会增加热损耗并可能导致电源故障。
功率因数低主要有两个原因:
位移:当电路的电压和电流波形异相时会产生位移,通常是由电感或电容等电抗元件引起的。
失真:波的原始形状发生改变,通常是由整流器等非线性电路引起的。这些非线性波包含很多谐波含量,会使电网中的电压失真。
功率因数校正(PFC)是一系列尝试提高设备功率因数的方法。
解决位移问题,通常采用外部无功元件来补偿电路的总无功功率。
解决失真问题有两种方法:
无源功率因数校正(PFC):使用无源滤波器滤除谐波以提高功率因数。这种方法适用于低功率应用,在高功率应用中,其效果远远不够。
有源功率因数校正(PFC):使用开关变换器调制失真波,以将其整形为正弦波。整形后的信号中存在的唯一谐波位于开关频率处,因此很容易滤除。有源功率因数校正被认为是最好的功率因数校正方法,但会增加设计的复杂性。
良好的功率因数校正电路对任何现代设计都至关重要,因为功率因数较差的设备效率也低下,而且会为电网带来不必要的压力,并可能给其他连网设备带来问题。
AC / DC电源中的功率因数校正(PFC)需求
在 另一篇文章中我们曾经讨论过,AC / DC电源由多个电路组成,这些电路将输入端的交流电压转换为输出端稳定的直流电压。负责将交流电压转换为直流电压的整流器是其中最重要的电路,但仅此电路是不足以确保正常工作的。
为了保证AC / DC电源的高效与安全,还需要结合隔离、功率因数校正(PFC)和降压功能。这些元素可以保护用户、保护电网和所有连接的设备,它们都一定程度地集成在所有的开关电源中。
任何一个开关电源的第一步操作都是对输入电压进行整流。整流是将信号从交流电转换为直流电的过程,通过整流器来完成。交流电中的负电压可以通过半波整流器截止,也可以使用全波整流器反相。
全波整流器由四个二极管组成,并采用Graetz桥配置连接。这些二极管会随着电源电压从负变为正而导通和关断,从而使负半周期极性反转,并将交流正弦波转换为直流波(见图1)。

但整流器输出波形具有较大的电压变化,称为纹波电压。将一个储能电容器与二极管电桥并联起来,可以帮助平滑输出电压纹波。
但如果仔细观察整流器储能电容器的输出波形,会发现电容在很短的时间跨度内被充电,具体来讲,是从电容器输入端电压大于电容器电荷的那一点,到整流信号峰值之间。这会在电容器中产生一系列的短电流尖峰,看上去完全不似正弦曲线(见图2)。

这些短电流尖峰不仅对电源,而且对整个电网都可能带来严重影响。要了解其严重性,我们必须首先了解谐波的概念。
谐波与傅立叶变换
截至目前,我们所看到的大多数电波形都是正弦波。但实际上它通常不再是纯粹的正弦波,尤其是当电路中存在电抗元件(电容器、电感器)或非线性组件(晶体管、二极管)时。其波形由不同的、而且通常很复杂的数学函数来定义。这可能会使波形分析更加困难,因为分析背后的数学会相当困难(请参见图3)。

所幸在19世纪,法国数学家Jean-Baptiste Joseph Fourier提出了一种方法,可以将任意一个周期波形分解为一系列具有不同频率的正弦和余弦波,称为谐波(见图4)。其中第一个波为基波,是频率最低的波。其他几个波与基波相结合并给定振幅和频率。根据经验,波形形状偏离纯正弦波越多,其谐波就越多。

谐波频率一定是基波频率的整数倍。例如,如果某波的基频为50Hz,则第二谐波频率为100Hz,第三谐波频率为150Hz,依此类推。
振幅是谐波最重要的参数之一,它是谐波对基频影响的度量。通常,基频的振幅最大,谐波的振幅按其阶次成比例地减小,因此实际上并不存在9次或20次谐波。谐波幅度可以绘制成图表,显示每个谐波在创建任意波形中所起的作用。
但对电容电流来说,其波形看起来与三角函数非常相似。 理想情况下,这种波是无限短、无限强大的脉冲。不难理解,将这种形状的波分解为正弦波会很复杂,而且会产生大量很强的谐波,几乎涵盖所有频率(请参见图5)。

这不一定是个问题,因为设备仍可为负载供电,它只会影响电源的功率因数,因此许多低功率AC / DC电源制造商对此不做处理。但是,如果有太多低功率因数的大功率设备连接到电网,则可能会产生问题,甚至会造成停电!
功率因数
交流电中的功率有三种类型。第一种称为有功功率,通常指实际功率,即P。它表示传递给负载的净能量。如果负载是纯电阻性的,则线路中的所有功率均为有功功率,电压和电流彼此同相振荡。第二种,如果负载是纯电抗性的,例如电感器或电容器,则为无功功率,通常表示为Q。这种功率用于在电抗性组件中产生并维持磁场与电场。这些场使电流相对于电压错相。对于电容性负载,电流超前90°;对于电感性负载,电流落后90°(见图6)。 这意味着由这些纯电抗负载产生的总功率为零,因为正无功功率被负无功功率抵消了。

在实际应用中,负载不会是纯电阻性或纯电抗性,而是两者的结合。第三种功率类型是有功功率和无功功率之和,称为视在功率,即S。其和为二次方之和,而有功功率、无功功率和视在功率之间的关系通常表达为三角形。
功率因数是有功功率与视在功率之间的关系,对于测量电路中功率传输的效率非常有用(请参见图7)。

低功率因数是位移和失真两种因素结合导致的结果。首先,在线性负载中,电抗性组件使电流和电压波性异相。电压和电流之间的相位差对总功率因数的影响由位移因数定义,通过等式(1)表示为波形之间角度的余弦值:

继续阅读 >>>请复制下方链接进入MPS官网查看:
https://www.monolithicpower.cn/202302_12