欢迎光临散文网 会员登陆 & 注册

自制均值不等式+对数一题及其解答

2023-07-01 22:41 作者:Derivitiva  | 我要投稿

已知a%3E1%2Cb%3E1%2Cc%3E0,且满足a%5Ecb%5Ec%3Db%5E%7B%5Cln%7Ba%5E2%7D%7D

(1)求证:0%3Cc%3C2%5Cln%7Ba%7D

(2)求%5Cfrac%7B(%5Cfrac%7B%5Cln%7Bab%7D%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B%5Cln%7Ba%7D%7D%7Bc%7D)(c%5Cln%7Bab%7D%2B%5Cln%7Ba%7D%5Cln%7Bb%7D)%7D%7B%5Cln%7Ba%5Ec%7D%7D的最小值


(1)证明:由方程a%5Ecb%5Ec%3Db%5E%7B%5Cln%7Ba%5E2%7D%7D,可得b%3Da%5E%5Cfrac%7Bc%7D%7B2%5Cln%7Ba-c%7D%7D%3E1

由于a%3E1,所以%5Cfrac%7Bc%7D%7B2%5Cln%7Ba-c%7D%7D%3E0,又有c%3E0,故2%5Cln%7Ba-c%7D%3E0

所以0%3Cc%3C2%5Cln%7Ba%7D.

(2)解:化简上式

%5Cfrac%7B%5Cleft(%5Cfrac%7B%5Cln%7Bab%7D%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B%5Cln%7Ba%7D%7D%7Bc%7D%5Cright)%5Cleft(c%5Cln%7Bab%7D%2B%5Cln%7Ba%7D%5Cln%7Bb%7D%5Cright)%7D%7B%5Cln%7Ba%5Ec%7D%7D%3D%5Cleft(%5Cfrac%7B%5Cln%7Bab%7D%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B%5Cln%7Ba%7D%7D%7Bc%7D%5Cright)%5Cleft(%5Cfrac%7Bc%5Cln%7Bab%7D%2B%5Cln%7Ba%7D%5Cln%7Bb%7D%7D%7Bc%5Cln%7Ba%7D%7D%5Cright)

%3D%5Cleft(%5Cfrac%7B%5Cln%7Bab%7D%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B%5Cln%7Ba%7D%7D%7Bc%7D%5Cright)%5Cleft(%5Cfrac%7B%5Cln%7Bab%7D%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B%5Cln%7Bb%7D%7D%7Bc%7D%5Cright)%3D%3D%5Cleft(%5Cfrac%7B%5Cln%7Ba%7D%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B%5Cln%7Ba%7D%7D%7Bc%7D%2B1%5Cright)%5Cleft(%5Cfrac%7B%5Cln%7Bb%7D%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B%5Cln%7Bb%7D%7D%7Bc%7D%2B1%5Cright)

%3D%5Cln%7Ba%7D%5Cln%7Bb%7D%7B(%5Cfrac%7B1%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B1%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B1%7D%7Bc%7D)%7D%5E2

由方程a%5Ecb%5Ec%3Db%5E%7B%5Cln%7Ba%5E2%7D%7D,可得c%5Cln%7Bab%7D%3D2%5Cln%7Ba%7D%5Cln%7Bb%7D,因此有%5Cfrac%7Bc%5Cln%7Bab%7D%7D%7B%5Cln%7Ba%7D%5Cln%7Bb%7D%7D%2B1%3D3

从而%5Cfrac%7Bc%5Cln%7Ba%7D%2Bc%5Cln%7Bb%7D%2B%5Cln%7Ba%7D%5Cln%7Bb%7D%7D%7B%5Cln%7Ba%7D%5Cln%7Bb%7D%7D%3D3,即%5Cfrac%7Bc%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7Bc%7D%7B%5Cln%7Ba%7D%7D%2B1%3D3

结论:%5Cfrac%7Bc%5Cleft(%5Cfrac%7B1%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B1%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cright)%7D%7B3%7D%3D1

巧用1的代换,将原式乘上1:

原式=%5Cfrac%7Bc%5Cln%7Ba%7D%5Cln%7Bb%7D%7B(%5Cfrac%7B1%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B1%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B1%7D%7Bc%7D)%7D%5E3%7D%7B3%7D

接下来可以使用均值不等式求这个式子的最值。

a%3E1%2Cb%3E1%2Cc%3E0,可得%5Cln%7Ba%7D%2C%5Cln%7Bb%7D%2Cc皆为正数,

因此(三元均值不等式)%5Cfrac%7B3%7D%7B%5Cfrac%7B1%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B1%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B1%7D%7Bc%7D%7D%5Cle%5Csqrt%5B3%5D%7Bc%5Cln%7Ba%7D%5Cln%7Bb%7D%7D

两边立方,得%5Cfrac%7B27%7D%7B%7B(%5Cfrac%7B1%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B1%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B1%7D%7Bc%7D)%7D%5E3%7D%5Cle%20c%5Cln%7Ba%7D%5Cln%7Bb%7D

简单移项,得%5Cfrac%7Bc%5Cln%7Ba%7D%5Cln%7Bb%7D%7B(%5Cfrac%7B1%7D%7B%5Cln%7Ba%7D%7D%2B%5Cfrac%7B1%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B1%7D%7Bc%7D)%7D%5E3%7D%7B3%7D%5Cgeq9

%5Cfrac%7B(%5Cfrac%7B%5Cln%7Bab%7D%7D%7B%5Cln%7Bb%7D%7D%2B%5Cfrac%7B%5Cln%7Ba%7D%7D%7Bc%7D)(c%5Cln%7Bab%7D%2B%5Cln%7Ba%7D%5Cln%7Bb%7D)%7D%7B%5Cln%7Ba%5Ec%7D%7D%5Cgeq9

取等条件:当且仅当c%3D%5Cln%7Ba%7D%3D%5Cln%7Bb%7D,此时c(0%2C2%5Cln%7Ba%7D)范围内,%5Cln%7Ba%7D%3D%5Cln%7Bb%7D也可以成立,所以原式可以取得等号.因此这个式子的最小值就是9.



自制均值不等式+对数一题及其解答的评论 (共 条)

分享到微博请遵守国家法律