欢迎光临散文网 会员登陆 & 注册

复习笔记Day108

2023-02-26 20:53 作者:间宫_卓司  | 我要投稿

这几天在看应坚钢的概率论,一开始选这本书的原因倒不是因为我知道这本书的观点比较高(相较于我看过的其他概率论课本来说),不过看看倒也无所谓···因为概率论放在复试的面试部分,所以我不怎么打算做题,主要是基础知识要梳理清楚。过几天如果我能读的下去的话,我会在读完这本书后把这本书的大体框架写成笔记发上来,不过应该会跳着读了,一些完全不可能问到的地方就跳过了。

虽然说不怎么做题,但是因为在习题里面看到了之前做过的数分题,所以还是打算试一下

108.1 利用%5Ctext%7BBernoulli%7D的大数定律证明%5Ctext%7BWeierstrass%7D定理:设f%5B0%2C1%5D上的连续函数,定义%5Ctext%7BBernstein%7D多项式

f_n%5Cleft(%20x%20%5Cright)%20%3D%5Csum_%7Bk%3D0%7D%5En%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09n%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20f%5Cleft(%20%5Cfrac%7Bk%7D%7Bn%7D%20%5Cright)%7Dx%5Ek%5Cleft(%201-x%20%5Cright)%20%5E%7Bn-k%7D%2Cx%5Cin%20%5Cleft%5B%200%2C1%20%5Cright%5D%20

f_n%5B0%2C1%5D上一致收敛于f

首先回顾一下%5Ctext%7BBernoulli%7D的大数定律

懒得自己打了


此外还可以知道,%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20_n%3Dk%20%5Cright)%20%3D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09n%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20p%5Ek%5Cleft(%201-p%20%5Cright)%20%5E%7Bn-k%7D,为了凑出%5Ctext%7BBernstein%7D多项式的形式,先试试看把p换成x。这个时候,%5Ctext%7BBernstein%7D多项式就变成了

f_n%5Cleft(%20x%20%5Cright)%20%3D%5Csum_%7Bk%3D0%7D%5En%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09n%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20%5Cfrac%7Bk%7D%7Bn%7D%7Dx%5Ek%5Cleft(%201-x%20%5Cright)%20%5E%7Bn-k%7D%2Cx%5Cin%20%5Cleft%5B%200%2C1%20%5Cright%5D%20

这就是%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D,那么现在来估计一下%5Cleft%7C%20%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft%7C%20%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright)%20%0A%5C%5C%26%2B%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright)%5C%5C%0A%09%26%5Cle%20%5Cvarepsilon%20%2B%5Cfrac%7BM%7D%7B4%5Cvarepsilon%20%5E2n%7D%5C%5C%0A%5Cend%7Baligned%7D

这里的%5Cmathbb%7BE%7D(X%3BA)代表把样本空间限制在A上对随机变量X去求期望

其中的M%3D%5Cmax%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%20%5Cright)%20,分母的估计来源于%5Ctext%7BBernoulli%7D大数定律的证明,从上面的估计可以看出,对于与x无关的充分大的n,会成立%5Cleft%7C%20%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%202%5Cvarepsilon%20,也就是%5Cleft%7C%20f_n%5Cleft(%20x%20%5Cright)%20-x%20%5Cright%7C%3C2%5Cvarepsilon%20

对于一般的情况来说,从上面的证明可以看出来,实际上就是要估计

%5Cleft%7C%20%5Cmathbb%7BE%7D%20%5Cleft(%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C

为了估计这个数,试着把它往上面的式子的形式上凑。因为f(x)%5B0%2C1%5D上连续,所以它在%5B0%2C1%5D上一致连续,也就是说%5Cforall%20%5Cvarepsilon%20%3E0%5Cexists%20%5Cdelta%20%3E0%5Cforall%20%5Cleft%20%7Cx-y%20%5Cright%7C%3C%5Cdeltax%2Cy%5Cin%5B0%2C1%5D,都成立%5Cleft%7C%20f%5Cleft(%20x%20%5Cright)%20-f%5Cleft(%20y%20%5Cright)%20%5Cright%7C%3C%5Cvarepsilon%20,那么

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft%7C%20%5Cmathbb%7BE%7D%20%5Cleft(%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3D%5Cleft%7C%20%5Cmathbb%7BE%7D%20%5Cleft(%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright)%5C%5C%0A%09%26%2B%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright)%5C%5C%0A%09%26%5Cle%20%5Cvarepsilon%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cdelta%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cdelta%20%5Cright)%5C%5C%0A%09%26%5Cle%20%5Cvarepsilon%20%2B%5Cfrac%7BM%7D%7B4%5Cdelta%20%5E2n%7D%5C%5C%0A%5Cend%7Baligned%7D

然后和上面一样可以导出结论,其中第二个不等号是因为

%5Cleft%5C%7B%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright%5C%7D%20%5Csubset%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cdelta%20%5Cright)%20

这个问题的数分证法见陈纪修,比这个复杂很多

108.2 设随机变量%5Cxi是标准化的,证明:

x%3E0%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%5Cge%20x%20%5Cright)%20%5Cle%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D

此不等式不能再改进,即存在标准化的随机变量%5Cxi,使得%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%5Cge%20x%20%5Cright)%20%3D%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D

(提示:先利用%5Ctext%7BChebyshev%7D的方法找到适当的函数证明%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ex%20%5Cright)%20%3D%5Cfrac%7B1%2Ba%5E2%7D%7B%5Cleft(%20x%2Ba%20%5Cright)%20%5E2%7D,然后取适当的a

按照提示探索了一段时间后,可知

%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ex%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%201%3B%5Cleft%5C%7B%20%5Cxi%20%3Ex%20%5Cright%5C%7D%20%5Cright)%20%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20%5Cfrac%7B%5Cxi%20%2Ba%7D%7Bx%2Ba%7D%20%5Cright)%20%5E2%3B%5Cleft%5C%7B%20%5Cxi%20%3Ex%20%5Cright%5C%7D%20%5Cright)%20%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20%5Cfrac%7B%5Cxi%20%2Ba%7D%7Bx%2Ba%7D%20%5Cright)%20%5E2%20%5Cright)%20

计算可知%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20%5Cfrac%7B%5Cxi%20%2Ba%7D%7Bx%2Ba%7D%20%5Cright)%20%5E2%20%5Cright)%20%3D%5Cfrac%7B1%2Ba%5E2%7D%7B%5Cleft(%20x%2Ba%20%5Cright)%20%5E2%7D(这里之前一直把标准化的随机变量的期望当成1了,结果半天出不来这个结果)

接下来,因为%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20a%7D%5Cln%20%5Cleft(%20%5Cfrac%7B1%2Ba%5E2%7D%7B%5Cleft(%20x%2Ba%20%5Cright)%20%5E2%7D%20%5Cright)%20%3D%5Cfrac%7B2a%7D%7B1%2Ba%5E2%7D-%5Cfrac%7B2%7D%7Bx%2Ba%7D,易知xa%3D1时这个关于a的函数有最小值,带入可得

%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%5Cge%20x%20%5Cright)%20%5Cle%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D

而如果一个随机变量以F%5Cleft(%20x%20%5Cright)%20%3D1-%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D为它的分布函数的话,它的期望是0且方差是1,这就证明了结论(大概吧,懒得算了)

这题的数分解法见78.3



复习笔记Day108的评论 (共 条)

分享到微博请遵守国家法律