欢迎光临散文网 会员登陆 & 注册

范德蒙德行列式的推导

2023-06-03 22:01 作者:~Sakuno酱  | 我要投稿

命题

证明 %5Cbegin%7Bvmatrix%7D%0A1%20%26%20x_1%20%26%20x_1%5E2%20%26%20..%20%26x_1%5E%7Bn-1%7D%20%5C%5C%0A1%20%26%20x_2%20%26%20x_2%5E2%20%26%20..%20%26%20x_2%5E%7Bn-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A1%20%26%20x_n%20%26%20x_n%5E2%20%26%20..%20%26%20x_n%5E%7Bn-1%7D%20%0A%5Cend%7Bvmatrix%7D 等于 %5Cprod_%7B1%20%5Cle%20i%20%3C%20j%20%5Cle%20n%7D%20(x_j-x_i)

范德蒙德行列式的特点就是第k列的次数是k-1次,每一列是齐次的

我们的思路是作初等行变换,同时希望改变后的每一列都是齐次的。


n 使用归纳法

假设 n%3Dk 时成立

考虑n%3Dk%2B1

%5Cbegin%7Bvmatrix%7D%0A1%20%26%20x_1%20%26%20x_1%5E2%20%26%20..%20%26%20x_1%5E%7Bk-1%7D%20%260%20%5C%5C%0A1%20%26%20x_2%20%26%20x_2%5E2%20%26%20..%20%26%20x_2%5E%7Bk-1%7D%20%26%20x_2%5E%7Bk%7D%20-x_1x_2%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A1%20%26%20x_%7Bk%2B1%7D%20%26%20x_%7Bk%2B1%7D%5E2%20%26%20..%20%26%20x_k%5E%7Bk-1%7D%20%26%20x_%7Bk%2B1%7D%5E%7Bk%7D%20-%20x_1x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

作初等列变换, 把第k列乘以 -x_1 加到k%2B1

然后是第k-1列乘以-x_1加到k列,继续重复k次,得到

%5Cbegin%7Bvmatrix%7D%0A1%20%26%200%20%26%200%20%26%20..%20%26%200%20%260%20%5C%5C%0A1%20%26%20x_2-x_1%20%26%20x_2%5E2%20-x_1x_2%26%20..%20%26%20x_2%5E%7Bk-1%7D-x_1x_2%5E%7Bk-2%7D%20%26%20x_2%5E%7Bk%7D%20-x_1x_2%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A1%20%26%20x_%7Bk%2B1%7D%20-x_1%26%20x_%7Bk%2B1%7D%5E2%20-x_%7B1%7Dx_%7Bk%2B1%7D%26%20..%20%26%20x_k%5E%7Bk-1%7D%20-x_1x_k%5E%7Bk-2%7D%26%20x_%7Bk%2B1%7D%5E%7Bk%7D%20-%20x_1x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

根据行列式的性质按第一行展开得到

%5Cbegin%7Bvmatrix%7D%0A%20x_2-x_1%20%26%20x_2%5E2%20-x_1x_2%26%20..%20%26%20x_2%5E%7Bk-1%7D-x_1x_2%5E%7Bk-2%7D%20%26%20x_2%5E%7Bk%7D%20-x_1x_2%5E%7Bk-1%7D%20%5C%5C%0A%20x_3-x_1%20%26%20x_3%5E2%20-x_1x_3%26%20..%20%26%20x_3%5E%7Bk-1%7D-x_1x_3%5E%7Bk-2%7D%20%26%20x_3%5E%7Bk%7D%20-x_1x_3%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A%20x_%7Bk%2B1%7D%20-x_1%26%20x_%7Bk%2B1%7D%5E2%20-x_%7B1%7Dx_%7Bk%2B1%7D%26%20..%20%26%20x_k%5E%7Bk-1%7D%20-x_1x_k%5E%7Bk-2%7D%26%20x_%7Bk%2B1%7D%5E%7Bk%7D%20-%20x_1x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

每一行可以提取公因子 x_2-x_1x_3-x_1 等

(x_2-x_1)(x_3-x_1)..(x_%7Bk%2B1%7D-x_1)%5Cbegin%7Bvmatrix%7D%0A%201%20%26%20x_2%26%20..%20%26%20x_2%5E%7Bk-2%7D%20%26%20x_2%5E%7Bk-1%7D%20%5C%5C%0A%201%20%26%20x_3%20%26%20..%20%26%20x_3%5E%7Bk-2%7D%20%26%20x_3%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A%201%26%20x_%7Bk%2B1%7D%26%20..%20%26%20x_k%5E%7Bk-2%7D%26%20x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

注意到右边的行列式是k阶的

%3D(x_2-x_1)(x_3-x_1)..(x_%7Bk%2B1%7D-x_1)%5Cprod_%7B2%5Cle%20i%3Cj%5Cle%20k%2B1%7D(x_j-x_i)


%3D%5Cprod_%7B1%20%5Cle%20i%20%3Cj%20%5Cle%20k%2B1%7D(x_j-x_i)



范德蒙德行列式的推导的评论 (共 条)

分享到微博请遵守国家法律