正则语言regular language
FA={Q, ∑, 𝛿, q0, F}
representation: L-language, R-regular language, NR-nonregular language
∑={a,b}; notes: ø, {ε}, ∑* are all regular language
-----------------------------
L U ø = ø U L = L
L ∩ ø = ø ∩ L = ø
L o ø = ø o L = ø
L o ε = ε o L = L
------------------------------
regular closurse (proved) <u n o is regular operation>
RUR=R; R∩R=R; RoR=R; ¬R=R
-------------------------------
else lemma:
RUNR=R|NR
EX: {a,b}* U {a^n b^n| n≥0} = {a,b}*=∑* | ø U NR = NR
R∩NR=R|NR
EX: ø ∩ NR = ø | {a,b}* ∩ {a^n b^n| n≥0} = {a^n b^n| n≥0}
RoNR=R|NR
EX: ø o NR = ø | a o {a^n b^m| n≥0, m=n+1} = {a^m, b^m| m≥0}
------------------------------
NRUNR=R/NR
EX: {a^i b^j | i≤j} U {a^i b^j | i>j} = {a* b*}
NR∩NR=R/NR
EX: {a^i b^j | i<j} U {a^i b^j | i>j} = ø
NRoNR=R/NR
EX: |{a^i b^j | i>j} o {a^i b^j | i>j}= {a^i b^j a^i b^j | i>j}
------------------------------
对于判断是否为regular language不懂的看 (hint:fa无记忆)
https://math.stackexchange.com/questions/282216/determine-if-a-language-is-regular-from-the-first-sight
-------------------------------
regular ⊆ context-free ⊆ decidable(recursive) language ⊆ reconginzable language