硬核战双97文案
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因频率降低的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象多用于天体的移动及规律的预测上。
红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的频率降低都可以称为红移。对于频率较高的γ射线、X-射线和紫外线等波段,频率降低确实是波谱向红光移动,“红移”的命名并无问题;而对于频率较低的红外线、微波和无线电波等波段,尽管频率降低实际上是远离红光波段,这种现象还是被称为“红移”。
当光源远离观测者运动时,观测者观察到的电磁波谱会发生红移,所有的波(包括机械波、电磁波和引力波等)都会因为多普勒效应而造成的频率和波长的变化,其中频率降低,波长变长的现象称为红移现象,这样的红移现象在日常生活中有很多应用,例如多普勒雷达、雷达枪,在分光学上,人们使用多普勒红移测量天体的运动,在天体光谱学里,人们使用多普勒红移测量天体的物理行为。
这种多普勒红移的现象最早是在19世纪所预测并观察到的,当时的部分科学家认为光的本质是一种波。
另一种红移机制被用于解释在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象。红移增加的比例与距离成正比。这种关系为宇宙在膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。
另一种红移称为宇宙学红移,其机制为空间的度规膨胀。这机制说明了在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象,其红移增加的比例与距离成正比。这种关系为宇宙膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。
另一种形式的红移是引力红移,其为一种相对论性效应,当电磁辐射传播远离引力场时会观测到这种效应;反过来说,当电磁辐射传播接近引力场时会观测到引力蓝移,其波长变短、频率升高。
一个天体的光谱向低频(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使频率降低。因为红光的频率比蓝光的低,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移。根据广义相对论,光从重力场中发射出来时也会发生红移的现象。这种红移称为重力红移
三者区别:多普勒红移主要指的是,各种波相对于观测者或者某一参考系远离造成的。引力红移,主要指的是电磁波在引力场的作用下所造成的。宇宙学红移主要是指在宇宙尺度上,天体特别是远处的天体的远离所造成的。
在高光谱遥感领域的红移。在植被的光谱曲线中,遭胁迫的植物的红-红外透射曲线向更低频率方向移动的现象称为“红端偏移”简称“红移”
20世纪初,美国天文学家埃德温·哈勃发现,观测到的绝大多数星系的光谱线存在红移现象。这是由于宇宙空间在膨胀,使天体发出的光波被拉长,频率降低,谱线因此“变红”,这称为宇宙学红移,并由此得到哈勃定律。20世纪60年代发现了一类具有极高红移值的天体——类星体,成为近代天文学中非常活跃的研究领域。
一般说来,为了从其他红移中区别引力红移,你可以将这个天体的大小与这个天体质量相同的黑洞的大小进行比较。类似星云和星系这样的天体,它们的半径是相同质量黑洞半径的千亿倍,因此其红移的量级也大约是静止频率的千亿分之一。
对于普通的恒星而言,它们的半径是同质量黑洞半径的十万倍左右,这已经接近光谱观测分辨率的极限了。中子星和白矮星的半径大约是同质量黑洞半径的10和3000倍,其引力红移的量级可以达到静止频率的1/10和1/1000。
其实在大自然中,有两种我们经常能够见到的,有红移现象造成的景象,即:日出和日落。因为,在日出和日落的时候,从地球地面上来看太阳光是斜射向地球的。