欢迎光临散文网 会员登陆 & 注册

悼念!著名数学家王元院士逝世,曾研究哥德巴赫猜想取得卓越成果

2021-11-05 16:56 作者:老顽童崔坤  | 我要投稿

三素数定理推论:Q=3+q1+q2


原创作者:崔坤


中国青岛即墨,266200,E-mail:cwkzq@126.com


摘要:


数学家刘建亚在《哥德巴赫猜想与潘承洞》中说:“ 我们可以把这个问题反过来思考,


已知奇数N可以表成三个素数之和,


假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,


那么我们也就证明了偶数的哥德巴赫猜想。”,


直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。


本文正是在上述方法和定理下给出了三素数定理推论:


Q=3+q1+q2


【该方法简称最小三素数法】


关键词:三素数定理,奇素数,加法交换律结合律


证明:


根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:


每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。


它用下列公式表示:


Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,则Q=q1+q2+q3


根据加法交换律结合律,


必有题设:q1≥q2≥q3≥3


Q+3=q1+q2+q3+3


Q+3-q3=3+q1+q2


等式右边只有3+q1+q2,与q3无关


同时,有且仅有q3=3时,等式左边Q+3-q3=Q


则有新的推论:Q=3+q1+q2


左边Q表示每个大于等于9的奇数,右边表示3+2个奇素数的和。


结论:每一个大于或等于9的奇数Q都是3+2个奇素数之和


实际上:


数学家们验证了6至350亿亿的每个偶数都是2个奇素数之和,那么6至350亿亿的每个偶数加3,则有:


9至3500000000000000003的每个奇数都是3+2个奇素数之和,


这验证了三素数定理推论Q=3+q1+q2的正确性。


r2(N)≥1


证明:


根据三素数定理推论Q=3+q1+q2


由此得出:每个大于或等于6的偶数N=Q-3=q1+q2


故“每一个大于或等于6的偶数N都是两个奇素数之和”,即总有r2(N)≥1


例如:任取一个大奇数:309,请证明:306是2个奇素数之和。


证明:根据三素数定理我们有:309=q1+q2+q3


根据加法交换律结合律,必有题设:三素数:q1≥q2≥q3≥3


那么:309+3=3+q1+q2+q3


309+3-q3=3+q1+q2


显然有且仅有q3=3时,309=3+q1+q2


则:306=q1+q2


证毕


参考文献:


[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]

[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]

悼念!著名数学家王元院士逝世,曾研究哥德巴赫猜想取得卓越成果的评论 (共 条)

分享到微博请遵守国家法律