欢迎光临散文网 会员登陆 & 注册

华工2023计量期末试题

2023-07-03 18:34 作者:Chenxvxv-  | 我要投稿

儿子们千呼万唤,今天就更新计量期末试题吧!

记得点赞投币!为了观感好点,公式都是一个一个导入的/(ㄒoㄒ)/~~                                                        

                                                                  A卷

I.Single choice Questions

  1. The cross-sectional data is (     )

    A.Different units at a given point in time

    B.Different units in different time

    C.The same unit in different time

    D.The same units at a given point in time

  2. For the model y_%7Bi%7D%20=%5Cbeta_%7B1%7D%20x_%7B1i%7D%20+%5Cbeta_%7B0%7D%20+u_%7Bi%7D%20,the ordinary least squares means(       )

    A.min%5Csum_%7B1%7D%5EN(y_%7Bi%7D-%20%5Cbar%7By%7D%20)%C2%B2

    B.min%5Csum_%7B1%7D%5EN(%7B%5Chat%7By%7D%20%7D%20_%7Bi%7D-%20%5Cbar%7By%7D%20)%C2%B2

    C.min%5Csum_%7B1%7D%5EN(%7B%7By%7D%20%7D%20_%7Bi%7D-%20%5Chat%7By%7D_%7Bi%7D%20)%C2%B2

    D.min%5Csum_%7B1%7D%5EN(%7B%7By%7D%20%7D%20_%7Bi%7D-%20u_%7Bi%7D%20)%C2%B2

  3. For the model y_%7Bi%7D%20=%5Cbeta_%7B0%7D%20+%5Cbeta_%7B1%7Dx_%7B1i%7D%20%20+%5Cbeta_%7B2%7Dx_%7B2i%7D%20%20+%5Cbeta_%7B3%7Dx_%7B3i%7D%20%20+u_%7Bi%7D%20,if x_%7B1i%7D%20=2x_%7B2i%7D%20+3x_%7B3i%7D%20 (         )

    A.The model satisfies classcial assumption

    B.The model suffers from perfect collinearity

    C.x_%7B2i%7D%20 is correlated with x_%7B3i%7D%20

    D.x_%7B1i%7D%20 is correlated with u_%7Bi%7D%20

  4. For the model y_%7Bi%7D%20=%5Cbeta_%7B0%7D%20+%5Cbeta_%7B1%7Dx_%7B1i%7D%20%20+%5Cbeta_%7B2%7Dx_%7B2i%7D%20%20+%5Cbeta_%7B3%7Dx_%7B3i%7D%20%20+u_%7Bi%7D%20,we want to verify whether %5Cbeta_%7B1%7D%20 is equal to %5Cbeta_%7B2%7D,the test statistic is (         )

    A.The DW statistic

    B.The F statistic

    C.The LM statistic

    D.The t statistic

  5. If %5Chat%7B%5Ctheta%20%7D%20 is a consistent estimator of %5Ctheta%20 ,it implies that (        )

    A.%5Clim_%7Bn%5Cto%E2%88%9E%7D%20Pr(%7C%5Chat%5Ctheta-%5Ctheta%7C%EF%BC%9E%5Cvarepsilon%20)%3D1 for every %5Cvarepsilon%20

    B.%5Clim_%7Bn%5Cto%E2%88%9E%7D%20Pr(%7C%5Chat%5Ctheta-%5Ctheta%7C%EF%BC%9C%5Cvarepsilon%20)%3D1 for every %5Cvarepsilon%20

    C.%5Clim_%7Bn%5Cto%E2%88%9E%7D%20Pr(%7C%5Chat%5Ctheta-%5Ctheta%7C%EF%BC%9E%5Cvarepsilon%20)%3D0 for every %5Cvarepsilon%20

    D.%5Clim_%7Bn%5Cto%E2%88%9E%7D%20Pr(%7C%5Chat%5Ctheta-%5Ctheta%7C%EF%BC%9C%5Cvarepsilon%20)%3D0 for every %5Cvarepsilon%20

  6. Which of the following statement about Beta coefficient is not right (        )

    A.The Beta coefficient is obtained by replace y and each x with a standardized version

    B.The Beta coefficient reflects the effect on standard deviation of y for a one standard deviation change in x

    C.The Beta coefficient can not be estimated by OLS

    D.The Beta coefficient can eliminate the impact of data scaling on estimators

  7. If x is categoricd independent variable and can be divided into 4 groups how many dummy variables should be introduced into a model without intercept (        )

    A.1

    B.2

    C.5

    D.4

  8. In the time series regression y_%7Bt%7D%20=%5Cbeta_%7B0%7D%20+%5Cbeta_%7B1%7Dx_%7B1t%7D%20%20+%5Cbeta_%7B2%7Dx_%7B2t%7D%20%20+u_%7Bt%7D%20,serial correlation implies that( )

    A.The usual OLS standard errors are invalid

    B.Corr(u_%7Bt%7D%20,u_%7Bs%7D%20)=0 ( t≠s )

    C.OLS is BLUE

    D.The estimator of %5Cbeta_%7B1%7D is no longer consistent.

  9. For the finite distributed lag model 

    y_%7Bt%7D%20=%5Calpha%20_%7B0%7D%20+%20%5Cdelta%20%C2%B7z_%7Bt%7D%2B%20%5Cdelta_%7B1%7D%20%C2%B7z_%7Bt-1%7D%2B%20%5Cdelta_%7B2%7D%20%C2%B7z_%7Bt-2%7D%2B%20%5Cdelta_%7B3%7D%20%C2%B7z_%7Bt-3%7D%2Bu_%7Bt%7D.If z permanent increase on unit at time t,the long-run propensity is (      )

    A.%5Chat%5Cdelta%20_%7B3%7D

    B.%5Chat%5Cdelta%20_%7B0%7D%2B%5Chat%5Cdelta%20_%7B1%7D%2B%5Chat%5Cdelta%20_%7B2%7D%2B%5Chat%5Cdelta%20_%7B3%7D

    C.%5Chat%5Cdelta%20_%7B1%7D%2B%5Chat%5Cdelta%20_%7B2%7D

    D.%5Chat%5Cdelta%20_%7B1%7D%2B%5Chat%5Cdelta%20_%7B2%7D%2B%5Chat%5Cdelta%20_%7B3%7D

  10. For the model y_%7Bt%7D%20=%5Calpha%20_%7B0%7D%20+%5Calpha_%7B1%7Dx_%7B1t%7D%2B%5Calpha_%7B2%7Dx_%7B2t%7D%2Bu_%7Bt%7D,if the value of DW statistic is equal to 1.92,it implies that (        )

    A.The independent variable x_%7B1t%7D is not significant

    B.u_%7Bt%7D%20 has AR(2) serial correlation

    C.u_%7Bt%7D%20 has AR(1) serial correlation

    D.The model is misspecified

II.Judgment 判断并且改错,正确的不用修改,错误的需要更正。

    

  1.For the model y_%7Bi%7D%3D%5Cbeta_%7B0%7D%2B%5Cbeta_%7B1%7Dx_%7Bi%7D%2Bu_%7Bi%7D,we have %5Chat%7By_%7Bi%7D%7D%20=%5Chat%7B%5Cbeta_%7B0%7D%7D%2B%5Chat%7B%5Cbeta_%7B1%7D%7D%5Chat%7Bx_%7Bi%7D%7D%2B%5Chat%7Bu_%7Bi%7D%7D

  2.Adding a regressor will increase adjusted R²

  3.For the classic regression model y_%7Bi%7D%3D%5Cbeta_%7B0%7D%2B%5Cbeta_%7B1%7Dx_%7B1i%7D%2B%C2%B7%C2%B7%C2%B7%2B%5Cbeta_%7Bk%7Dx_%7Bki%7D%2Bu_%7Bi%7D,we have                %5Csum_%7B1%7D%5En%20x_%7Bki%7D(y_%7Bi%7D-%5Cbeta_%7B0%7D-%5Cbeta_%7B1%7Dx_%7Bi1%7D-%C2%B7%C2%B7%C2%B7-%5Cbeta_%7Bk%7Dx_%7Bik%7D-u_%7Bi%7D)%3D0

  4.For the model y_%7Bi%7D%3D%5Cbeta_%7B0%7D%2B%5Cbeta_%7B1%7Dx_%7Bi%7D%2Bu_%7Bi%7D,under Assumption SLR.1 to SLR.3,we have 

     E(%5Ctilde%7B%5Cbeta_%7B1%7D%7D%20)=%5Cbeta_%7B1%7D

  5.SSE=%5Csum_%7B1%7D%5En(%5Chat%7By_%7Bi%7D%7D-%5Cbar%7By_%7Bi%7D%7D%20)%C2%B2%20

  6.Including one or more irrelevant variables in a multiple regression model or over                     specifying the model does not affect the unbiasedness of the OLS.

  7.The OLS estimators are inconsistent if the model has heteroskedasticity estimators 

  8.The random walk is a stationary process

  9.The R square of a multiple OLS is 0.7362,k=5 n=79 then the adjusted R square is               0.7362

 10.%5Chat%7Bmath%7D%3D2.274%2B0.00046totcomp%2B0.048staff-0.00020enroll

                     (6.113)  (0.00010)                  (0.040)             (0.00022)

                             n%3D408%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20                  R%C2%B2%3D0.0541     

      At 5% level we can reject H_%7B0%7D about staff


III.Answer the following questions briefly

 1.What are the Gauss-Markov Assumptions in MLR

 2.Explain the consequence of causing by measurement error under explanatory variable

 3.Why an MA(1) process is a stationary process?

 4.What is the implicaton of %5Cbeta_%7B3%7D%20 in the following model?

     y%3D%5Cbeta_%7B0%7D%2B%5Cbeta_%7B1%7Dx_%7B1%7D%2B%5Cbeta_%7B2%7Dx_%7B2%7D%2B%5Cbeta_%7B3%7D%5Cln%20x_%7B3%7D%2Bu  

 5.Explain the Breusch-Godfrey LM test for serial correlation


IV.

 1.According to a time series sample between consume(y) and income (x),we got the              following result by OLS (Standard error in parentheses)

      %5Chat%7By%7D%3D27.9123%2B0.4736x%20

              (2.6193)    (0.1024)

             we have n=57          R²=0.9328        DW=1.8403

(1)If the model has serial correlation,please calculate the correlation coefficients %5Chat%7B%5Crho%20%7D%20 about residual approximately

(2)Please write down the quasi-differencing model with no serial correlation


  2.Consider an equation to explain wage in terms of working experience its square and               education

            %5Cln%20wage%20%3D%20%5Calpha_%7B0%7D%2B%5Calpha_%7B1%7Dexp_%7Bi%7D%2B%5Calpha_%7B2%7Dexp_%7Bi%7D%C2%B2%2B%5Calpha_%7B3%7Dedu_%7Bi%7D%2Bu_%7Bi%7D

    suppose the estimator of %5Calpha_%7B2%7D is negative ,how do you explain the partial effect of exp on      %5Cln%20%7Bwage%7D

(2)Suppose y_%7Bt%7D%3De_%7B0%7D%2B%5Ctheta_%7B1%7De_%7Bt-1%7D ,e_%7Bt%7D is an independent identically distributed sequence              with expectation Zero and variance %5Csigma%20%C2%B2,prove that {y_%7Bt%7D} is a stationary sequence

华工2023计量期末试题的评论 (共 条)

分享到微博请遵守国家法律