欢迎光临散文网 会员登陆 & 注册

伯努利数(2)——一些应用

2021-12-18 13:09 作者:子瞻Louis  | 我要投稿

伯努利数第一期:自然数的等幂和——伯努利数

如上一期结尾所说,第二类伯努利数比原始的伯努利数应用更多,而上一期是由原始伯努利数得到的一系列结论,这里有必要用第二类伯努利数改良一下:

为了区别,就暂时先用%5Cbeta_n表示原始的伯努利数

  • %5Csum_%7Bk%3D0%7D%5En%20%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20n%2B1%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)B_k%3D0

  • B_n%3D%5Csum_%7Bk%3D0%7D%5En%20%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20n%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)B_k

  • %5Cfrac%20x%7Be%5Ex-1%7D%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20B_n%5Cfrac%7Bx%5En%7D%7Bn!%7D

  • S_k(n)%3D%5Cfrac1%7Bk%2B1%7D%5Csum_%7Bj%3D0%7D%5Ek%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20j%20%5Cend%7Barray%7D%20%5Cright)(-1)%5EjB_jn%5E%7Bk-j%2B1%7D

  • %5Cforall%20k%5Cgeq0%2CB_%7B2k%7D%3D%5Cbeta_%7B2k%7D%EF%BC%8CB_%7B2k%2B1%7D%3D-%5Cbeta_%7B2k%2B1%7D

  • %5Cforall%20k%5Cgeq1%2CB_%7B2k%2B1%7D%3D0

  • B_k%3D(-1)%5E%7Bk%7D%5Cbeta_k

正切函数的Maclaurin级数

我们在微积分中已经知道了一些函数的Maclaurin级数展开,

e%5Ex%3D1%2Bx%2B%5Cfrac1%7B2%7Dx%5E2%2B%5Cfrac16x%5E3%2B%E2%80%A6%2Cx%5Cin%5Cmathbb%20C

%5Csin%20x%3D1-%5Cfrac1%7B3!%7Dx%5E3%2B%5Cfrac1%7B5!%7Dx%5E5-%E2%80%A6%2Cx%5Cin%5Cmathbb%20C

这些都是在零点处的n阶导数的规律比较好找到的函数,但是正切函数和余切函数的规律就没有这么容易找到了,但是我们还是有办法将它展开成幂级数

根据伯努利数的生成函数定义:

%5Cfrac%7B2x%7D%7Be%5E%7B2x%7D-1%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%202%5EnB_n%5Cfrac%7Bx%5En%7D%7Bn!%7D

把第一项拎出来,则后面所有的奇数项都等于0了,即

%5Cfrac%7B2x%7D%7Be%5E%7B2x%7D-1%7D%3D-x%2B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%204%5EnB_%7B2n%7D%5Cfrac%7Bx%5E%7B2n%7D%7D%7B(2n)!%7D

%5CRightarrow%20%5Cfrac%7B2x%7D%7Be%5E%7B2x%7D-1%7D%2Bx%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%204%5EnB_%7B2n%7D%5Cfrac%7Bx%5E%7B2n%7D%7D%7B(2n)!%7D

等式右边又可以化为:

%5Cbegin%7Baligned%7D%20%5Cfrac%7B2x%7D%7Be%5E%7B2x%7D-1%7D%2Bx%20%26%3Dx%5Cfrac%7B2%7D%7Be%5E%7B2x%7D-1%7D%2Bx%5Cfrac%7Be%5E%7B2x%7D-1%7D%7Be%5E%7B2x%7D-1%7D%20%5C%5C%20%26%3Dx%5Cfrac%7Be%5E%7B2x%7D%2B1%7D%7Be%5E%7B2x%7D-1%7D%20%5C%5C%20%26%3Dx%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7Be%5Ex-e%5E%7B-x%7D%7D%3Dx%5Ccoth%20x%20%5Cend%7Baligned%7D

代入回上式就能得到双曲余切函数Lauaent级数展开

x%5Ccoth%20x%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%204%5EnB_%7B2n%7D%5Cfrac%7Bx%5E%7B2n%7D%7D%7B(2n)!%7D

%5CRightarrow%20%5Ccoth%20x%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%204%5EnB_%7B2n%7D%5Cfrac%7Bx%5E%7B2n-1%7D%7D%7B(2n)!%7D

又有%5Ccot%20x%3Di%5Cfrac%7Be%5E%7Bix%7D%2Be%5E%7B-ix%7D%7D%7Be%5E%7Bix%7D-e%5E%7B-ix%7D%7D%3Di%5Ccoth%20ix,则

%5Ccot%20x%3Di%5Csum_%7Bn%3D0%7D%5E%5Cinfty%204%5EnB_%7B2n%7D%5Cfrac%7B(ix)%5E%7B2n-1%7D%7D%7B(2n)!%7D

%5CRightarrow%20%5Ccot%20x%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20(-1)%5En4%5EnB_%7B2n%7D%5Cfrac%7Bx%5E%7B2n-1%7D%7D%7B(2n)!%7D

又得到了余切函数的Lauaent级数展开

再根据以下:

%5Cbegin%7Baligned%7D%20%5Ccot%20x-2%5Ccot%202x%20%26%3D%7B%5Ccos%20x%5Cover%5Csin%20x%7D-%7B2%5Ccos%202x%5Cover%5Csin2x%7D%20%5C%5C%20%26%3D%7B%5Ccos%5E2x-%5Ccos%5E2x%2B%5Csin%5E2x%5Cover%5Csin%20x%5Ccos%20x%7D%20%5C%5C%20%26%3D%7B%5Csin%20x%5Cover%5Ccos%20x%7D%3D%5Ctan%20x%20%5Cend%7Baligned%7D

于是,

%5Cbegin%7Baligned%7D%5Ctan%20x%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20(-1)%5En4%5EnB_%7B2n%7D%5Cfrac%7Bx%5E%7B2n-1%7D%7D%7B(2n)!%7D-2%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20(-1)%5En4%5EnB_%7B2n%7D%5Cfrac%7B(2x)%5E%7B2n-1%7D%7D%7B(2n)!%7D%20%5C%5C%20%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty(-1)%5En4%5EnB_%7B2n%7D(1-2%5E%7B2n%7D)%5Cfrac%7Bx%5E%7B2n-1%7D%7D%7B(2n)!%7D%20%5Cend%7Baligned%7D

再将它美化一下:

%5Ctan%20x%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty(-1)%5E%7Bn%2B1%7D2%5E%7B2n%7D(2%5E%7B2n%7D-1)B_%7B2n%7D%5Cfrac%7Bx%5E%7B2n-1%7D%7D%7B(2n)!%7D

Zeta函数的偶数处值

根据上一期Weierstrass分解定理得到的等式:

%5Csin%20z%3Dz%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%7Bz%5E2%7D%7Bn%5E2%5Cpi%5E2%7D%5Cright)

以及:

  • %5Cfrac%7Be%5Ez-e%5E%7B-z%7D%7D2%3D-i%5Cfrac%7Be%5E%7Bi(iz)%7D-e%5E%7B-i(iz)%7D%7D%7B2i%7D%3D-i%5Csin%20iz

  • e%5E%7B2z%7D-1%3D2e%5Ez%5Ccdot%20%5Cfrac%7Be%5Ez-e%5E%7B-z%7D%7D2

可得:

e%5E%7B2z%7D-1%3D2e%5Ezz%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1%2B%5Cfrac%7Bz%5E2%7D%7Bn%5E2%5Cpi%5E2%7D%5Cright)

而刚好右边是个整函数,根据上一期的定理可得这个等式是成立的

%5Cfrac%20z2替换z

e%5E%7Bz%7D-1%3De%5E%7Bz%2F2%7Dz%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1%2B%5Cfrac%7Bz%5E2%7D%7B4n%5E2%5Cpi%5E2%7D%5Cright)

取对数导数:

%5Cfrac%7Be%5Ez%7D%7Be%5Ez-1%7D%3D%5Cfrac1z%2B%5Cfrac12%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B2z%7D%7Bz%5E2%2B4n%5E2%5Cpi%5E2%7D

%5CRightarrow%20%5Cfrac%7Bze%5Ez%7D%7Be%5Ez-1%7D%3D1%2B%5Cfrac12z%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Ccolor%7Bblue%7D%7B%5Cfrac%7B2z%5E2%7D%7Bz%5E2%2B4n%5E2%5Cpi%5E2%7D%7D

这里假定%5Cvert%20z%5Cvert%20%EF%BC%9C2%5Cpi,将蓝色部分展开为级数

%5Cbegin%7Baligned%7D%5Cfrac%7Bze%5Ez%7D%7Be%5Ez-1%7D%26%3D1%2B%5Cfrac12z%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Csum_%7Bm%3D1%7D%5E%5Cinfty%20(-1)%5E%7Bm-1%7D%5Cfrac%7B2z%5E%7B2m%7D%7D%7B(2n%5Cpi)%5E%7B2m%7D%7D%20%5C%5C%20%26%3D1%2B%5Cfrac12z%2B%5Csum_%7Bm%3D1%7D%5E%5Cinfty%20(-1)%5E%7Bm-1%7D%5Cfrac%7B2%7D%7B(2%5Cpi)%5E%7B2m%7D%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5E%7B2m%7D%7Dz%5E%7B2m%7D%20%5C%5C%20%26%3D1%2B%5Cfrac12z%2B%5Csum_%7Bm%3D1%7D%5E%5Cinfty%20%5Ccolor%7Bpurple%7D%7B(-1)%5E%7Bm-1%7D%5Cfrac%7B2(2m)!%5Czeta(2m)%7D%7B(2%5Cpi)%5E%7B2m%7D%7D%7D%5Cfrac%7Bz%5E%7B2m%7D%7D%7B(2m)!%7D%5Cend%7Baligned%7D

而根据前面的一期专栏又有

%5Cbegin%7Baligned%7D%5Cfrac%7Bze%5Ez%7D%7Be%5Ez-1%7D%26%3D%5Csum_%7Bm%3D0%7D%5E%5Cinfty%20(-1)%5EmB_m%5Cfrac%7Bz%5Em%7D%7Bm!%7D%20%5C%5C%20%26%3D1%2B%5Cfrac12z%2B%5Csum_%7Bm%3D1%7D%5E%5Cinfty%20%5Ccolor%7Bpurple%7D%7BB_%7B2m%7D%7D%5Cfrac%7Bz%5E%7B2m%7D%7D%7B(2m)!%7D%5Cend%7Baligned%7D

于是:

(-1)%5E%7Bm-1%7D%5Cfrac%7B2(2m)!%5Czeta(2m)%7D%7B(2%5Cpi)%5E%7B2m%7D%7D%3DB_%7B2m%7D

%5CRightarrow%20%5Czeta(2m)%3D(-1)%5E%7Bm%2B1%7D%5Cfrac%7BB_%7B2m%7D(2%5Cpi)%5E%7B2m%7D%7D%7B2(2m)!%7D%2Cm%5Cin%5Cmathbb%20N

至此,就可以利用伯努利数来解决更广义的Basel问题了:

%5Cbegin%7Baligned%7D%5Czeta(2)%26%3D1%2B%5Cfrac1%7B2%5E2%7D%2B%5Cfrac1%7B3%5E2%7D%2B%E2%80%A6%3D%5Cfrac%7B%5Cpi%5E2%7D6%20%5C%5C%20%5Czeta(4)%26%3D1%2B%5Cfrac1%7B2%5E4%7D%2B%5Cfrac1%7B3%5E4%7D%2B%E2%80%A6%20%3D%5Cfrac%7B%5Cpi%5E4%7D%7B90%7D%5C%5C%20%5Czeta(6)%26%3D1%2B%5Cfrac1%7B2%5E6%7D%2B%5Cfrac1%7B3%5E6%7D%2B%E2%80%A6%3D%5Cfrac%7B%5Cpi%5E6%7D%7B945%7D%20%5C%5C%26%E2%80%A6%E2%80%A6%5Cend%7Baligned%7D

伯努利多项式

前面我们已经得到了

S_k(n)%3D%5Cfrac1%7Bk%2B1%7D%5Csum_%7Bj%3D0%7D%5Ek%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20j%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_jn%5E%7Bk-j%2B1%7D

其中S_k(n)%3D1%5Ek%2B2%5Ek%2B%E2%80%A6%2Bn%5Ek,右边括号则为二项式系数

不妨再将其化简,

 S_k(n)%3D%5Cfrac1%7Bk%2B1%7D%5Csum_%7Bj%3D0%7D%5Ek%5Cfrac%7B(k%2B1)!%7D%7Bj!(k-j%2B1)%7D%5Cbeta_jn%5E%7Bn-j%2B1%7D

%3D%5Csum_%7Bj%3D0%7D%5Ek%5Cfrac%7Bk!%7D%7Bj!(k-j)!%7D%5Cbeta_j%5Ccolor%7Bblue%7D%7B%5Cfrac%7Bn%5E%7Bn-j%2B1%7D%7D%7Bk-j%2B1%7D%7D

根据Newton-Leibniz formula(牛顿-莱布尼兹公式),得到

S_k(n)%3D%5Csum_%7Bj%3D0%7D%5Ek%5Cfrac%7Bk!%7D%7Bj!(k-j)!%7D%5Cbeta_j%5Ccolor%7Bblue%7D%7B%5Cint_%7B0%7D%5Ent%5E%7Bk-j%7D%5Cmathrm%20dt%7D

%3D%5Cint_0%5En%5Csum_%7Bj%3D0%7D%5Ek%5Cfrac%7Bk!%7D%7Bj!(k-j)!%7D%5Cbeta_jt%5E%7Bk-j%7D%5Cmathrm%20dt

%3D%5Cint_0%5En%5Ccolor%7Bred%7D%7B%5Csum_%7Bj%3D0%7D%5Ek%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%20%5C%5C%20j%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_jt%5E%7Bk-j%7D%7D%5Cmathrm%20dt

%5Cbeta_n(t)来表示红色部分,就能得到一个比较方便的式子

S_k(n)%3D%5Cint_0%5En%5Cbeta_k(t)%5Cmathrm%20dt

利用导数的性质,有

%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7DS_k(t)%3D%5Cbeta_k(t)

上一期中我们得到了S_k(t)的母函数为

e%5Ex%5Cfrac%7Be%5E%7Btx%7D-1%7D%7Be%5Ex-1%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20S_k(t)%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

取导数,

%5CRightarrow%20%5Cfrac%7Bxe%5E%7B(t%2B1)x%7D%7D%7Be%5Ex-1%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20%5Cbeta_k(t)%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

用-t替换t,有

%5Cfrac%7Bxe%5E%7B(1-t)x%7D%7D%7Be%5Ex-1%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20%5Cbeta_k(-t)%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%5Cleft(%5Csum_%7Bj%3D0%7D%5Ek%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%20%5C%5C%20j%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_j(-t)%5E%7Bk-j%7D%5Cright)%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%5Cleft(%5Csum_%7Bj%3D0%7D%5Ek%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%20%5C%5C%20j%20%5Cend%7Barray%7D%20%5Cright)%5Ccolor%7Bred%7D%7B(-1)%5E%7Bj%7D%5Cbeta_j%7Dt%5E%7Bk-j%7D%5Cright)%5Cfrac%7B(-x)%5Ek%7D%7Bk!%7D

红色部分就是第二类伯努利数,再用-x替换x,得到

%5Cfrac%7Bxe%5E%7Btx%7D%7D%7Be%5Ex-1%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%5Ccolor%7Bgreen%7D%7B%5Cleft(%5Csum_%7Bj%3D0%7D%5Ek%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%20%5C%5C%20j%20%5Cend%7Barray%7D%20%5Cright)B_jt%5E%7Bk-j%7D%5Cright)%7D%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

B_k(t)表示绿色部分,这才是耳熟能详的伯努利多项式

可以得到以下性质:

  1. B_n(0)%3DB_n

  2. B_n(x%2B1)%3D%5Cbeta_n(x)

  3. B_n(1-x)%3D(-1)%5EnB_n(x)

  4. B_n(1)%3D%5Cbeta_n

  5. n%E2%89%A01%E6%97%B6%2CB_n(1)%3DB_n(0)%3DB_n

1,2两个可以由生成函数直接得到,3可以在2中用-x替换x得到,4在3中代入x=0就可以得到,5则可以由4直接推出

微分性质

对伯努利多项式求导,得到

%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7DB_n(x)%3D%5Csum_%7Bk%3D0%7D%5E%7Bn-1%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20n%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)B_k(n-k)x%5E%7Bn-k-1%7D

%3D%5Csum_%7Bk%3D0%7D%5E%7Bn-1%7D%5Cfrac%7Bn(n-1)!%7D%7Bk!(n-1-k)!%7DB_kx%5E%7Bn-1-k%7D

%3Dn%5Csum_%7Bk%3D0%7D%5E%7Bn-1%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20n-1%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)B_kx%5E%7Bn-1-k%7D%3DnB_%7Bn-1%7D(x)

利用该性质,可得

%5Cint_0%5E1B_n(t)%5Cmathrm%20dt%3D%5Cfrac%7BB_%7Bn%2B1%7D(1)-B_%7Bn%2B1%7D(0)%7D%7Bn%2B1%7D%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A0%20%26%20n%E2%89%A00%2Cn%5Cin%20%5Cmathbb%20N%20%5C%5C%201%20%20%26%20n%3D0%20%0A%5Cend%7Barray%7D%5Cright.

于是,就可以再次美化一下等幂和公式,对k≠0

S_k(n)%3D%5Cint_0%5En%5Cbeta_k(t)%5Cmathrm%20dt%3D%5Cint_0%5EnB_k(t%2B1)%5Cmathrm%20dt

%5CRightarrow%20S_k(n)%3D%5Cint_0%5E%7Bn%2B1%7DB_k(t)%5Cmathrm%20dt

差分性质

为了方便计算伯努利多项式的差分,不妨利用生成函数

%5Cfrac%7Bxe%5E%7B(t%2B1)x%7D-%7Bxe%5E%7Btx%7D%7D%7D%7Be%5Ex-1%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty(B_k(t%2B1)-B_k(t))%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

%5CRightarrow%20xe%5E%7Btx%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty(B_k(t%2B1)-B_k(t))%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

将右式展为Maclaurin级数

xe%5E%7Btx%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20t%5Ek%5Cfrac%7Bx%5E%7Bk%2B1%7D%7D%7Bk!%7D%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%20t%5E%7Bk-1%7D%5Cfrac%7Bx%5E%7Bk%7D%7D%7B(k-1)!%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20kt%5E%7Bk-1%7D%5Cfrac%7Bx%5E%7Bk%7D%7D%7Bk!%7D

对比系数,就可以得到

B_k(t%2B1)-B_k(t)%3Dkt%5E%7Bk-1%7D

这样我们就又可以通过伯努利多项式的差分性质来得到等幂和公式

Euler-Maclaurin求和公式

伯努利多项式的微分性质可以用来导出Euler-Maclaurin求和公式: 

可以计算得到

B_1(x)%3Dx-%5Cfrac12

对两边微分,则

%5Cmathrm%20dB_1(x)%3D%5Cmathrm%20dx%20

F(x)是在[0,1]上N阶可导的函数

对它在[0,1]上积分,有

%5Cint_0%5E1F(x)%5Cmathrm%20dx%3D%5Cint_0%5E1F(x)%5Cmathrm%20dB_1(x)

分部积分法可得:

%5Cbegin%7Baligned%7D%5Cint_0%5E1F(x)%5Cmathrm%20dx%26%3DF(1)B_1(1)-F(0)B_1(0)-%5Cint_0%5E1F'(x)B_1(x)%5Cmathrm%20dx%20%5C%5C%20%26%3D%5Cfrac%7BF(1)%2BF(0)%7D2-%5Cint_0%5E1F'(x)%5Ccolor%7Bblue%7D%7BB_1(x)%5Cmathrm%20dx%7D%5Cend%7Baligned%7D

根据微分性质,对整数k≥0,有

B_k(x)%5Cmathrm%20dx%3D%5Cfrac1%7Bk%2B1%7D%5Cmathrm%20dB_%7Bk%2B1%7D(x)

代入到蓝色部分,得到

%5Cint_0%5E1F(x)%5Cmathrm%20dx%3D%5Cfrac%7BF(1)%2BF(0)%7D2-%5Cfrac12%5Cint_0%5E1F'(x)%5Cmathrm%20dB_2(x)

于是我们又可以对后面的积分用分部积分法

%5Cint_0%5E1F(x)%5Cmathrm%20dx%3D%5Cfrac%7BF(1)%2BF(0)%7D2-%5Cleft%5B%5Cfrac12B_2(x)F(x)%5Cright%5D_0%5E1%2B%5Cfrac12%5Cint_0%5E1F''(x)%5Ccolor%7Bgreen%7D%7BB_2(x)%5Cmathrm%20dx%7D

不难注意到又能将绿色部分用微分性质

%5Cbegin%7Baligned%7D%5Cint_0%5E1F(x)%5Cmathrm%20dx%26%3D%5Cfrac%7BF(1)%2BF(0)%7D2-%5Cleft%5B%5Cfrac12B_2(x)F(x)%5Cright%5D_0%5E1%2B%5Cfrac1%7B2%5Ccdot3%7D%5Cint_0%5E1F''(x)%5Cmathrm%20dB_3(x)%5C%5C%26%3D%5Cfrac%7BF(1)%2BF(0)%7D2-%5Cleft%5B%5Cfrac12B_2(x)F(x)%5Cright%5D_0%5E1%2B%5Cleft%5B%5Cfrac1%7B2%5Ccdot3%7DF''(x)B_3(x)%5Cright%5D_0%5E1%20%5C%5C%20%26%20-%5Cfrac1%7B2%5Ccdot3%7D%5Cint_0%5E1F'''(x)B_3(x)%5Cmathrm%20dx%5Cend%7Baligned%7D

重复上述操作N次,可得

%5Cint_0%5E1F(x)%5Cmathrm%20dx%3D%5Cfrac%7BF(1)%2BF(0)%7D2-%5Cleft%5B%5Csum_%7Bn%3D1%7D%5E%7BN-1%7D%5Cfrac%7B(-1)%5E%7Bn%2B1%7D%7D%7B(n%2B1)!%7DB_%7Bn%2B1%7D(x)F%5E%7B(n)%7D(x)%5Cright%5D_0%5E1%2B%5Cfrac%7B(-1)%5EN%7D%7BN!%7D%5Cint_0%5E1B_N(x)F%5E%7B(N)%7D(x)%5Cmathrm%20dx   当n≥1时,(-1)%5E%7Bn%2B1%7DB_%7Bn%2B1%7D(1)%3D(-1)%5E%7Bn%2B1%7DB_%7Bn%2B1%7D(0)%3DB_%7Bn%2B1%7D

%5Cleft%5B%5Csum_%7Bn%3D1%7D%5E%7BN-1%7D%5Cfrac%7B(-1)%5E%7Bn%2B1%7D%7D%7B(n%2B1)!%7DB_%7Bn%2B1%7D(x)F%5E%7B(n)%7D(x)%5Cright%5D_0%5E1%3D%5Csum_%7Bn%3D1%7D%5E%7BN-1%7D%5Cfrac%7BB_%7Bn%2B1%7D%7D%7B(n%2B1)!%7D%5Cleft(F%5E%7B(n)%7D(1)-F%5E%7B(n)%7D(0)%5Cright)

代回到上式中,

%5Cint_0%5E1F(x)%5Cmathrm%20dx%3D%5Cfrac%7BF(1)%2BF(0)%7D2-%5Csum_%7Bn%3D1%7D%5E%7BN-1%7D%5Cfrac%7BB_%7Bn%2B1%7D%7D%7B(n%2B1)!%7D%5Cleft(F%5E%7B(n)%7D(1)-F%5E%7B(n)%7D(0)%5Cright)%2B%5Cfrac%7B(-1)%5EN%7D%7BN!%7D%5Cint_0%5E1B_N(x)F%5E%7B(N)%7D(x)%5Cmathrm%20dx

不知道看到这里的人眼睛还好吗(# ̄▽ ̄#)

f(x%2Bt)%3DF(x)%2Ct%5Cin%5Cmathbb%20N,则有

%5Cint_t%5E%7Bt%2B1%7Df(x)%5Cmathrm%20dx%3D%5Cfrac%7Bf(t%2B1)%2Bf(t)%7D2-%5Csum_%7Bn%3D1%7D%5E%7BN-1%7D%5Cfrac%7BB_%7Bn%2B1%7D%7D%7B(n%2B1)!%7D%5Cleft(f%5E%7B(n)%7D(t%2B1)-f%5E%7B(n)%7D(t)%5Cright)%2B%5Cfrac%7B(-1)%5EN%7D%7BN!%7D%5Cint_t%5E%7Bt%2B1%7DB_N(x)f%5E%7B(N)%7D(x)%5Cmathrm%20dx

这样就得到了[t,t+1]区间上f(x)的伯努利数加积分的表达式,用同样的方法也可以在其他这样的区间上得到上面这种表达式

设a,b都是整数,对t从a加到b-1,

%5Cbegin%7Baligned%7D%5Csum_%7Bt%3Da%7D%5E%7Bb-1%7D%5Cfrac%7Bf(t%2B1)%2Bf(t)%7D2%26%3D%5Csum_%7Bt%3Da%2B1%7D%5E%7Bb%7D%5Cfrac%7Bf(t)%7D2%2B%5Csum_%7Bt%3Da%7D%5E%7Bb-1%7D%5Cfrac%7Bf(t)%7D2%20%5C%5C%20%26%3D%5Csum_%7Bt%3Da%7D%5E%7Bb%7D%5Cfrac%7Bf(t)%7D2-%5Cfrac%7Bf(a)%7D2%2B%5Csum_%7Bt%3Da%7D%5E%7Bb%7D%5Cfrac%7Bf(t)%7D2-%5Cfrac%7Bf(b)%7D2%20%5C%5C%20%26%3D%5Csum_%7Bt%3Da%7D%5E%7Bb%7Df(t)-%5Cfrac%7Bf(b)%2Bf(a)%7D2%5Cend%7Baligned%7D

而其余的部分可以根据差分求和规则积分区间的可加性化简,得到

%5Cint_a%5E%7Bb%7Df(x)%5Cmathrm%20dx%3D%5Csum_%7Bt%3Da%7D%5E%7Bb%7Df(t)-%5Cfrac%7Bf(b)%2Bf(a)%7D2-%5Csum_%7Bn%3D1%7D%5E%7BN-1%7D%5Cfrac%7BB_%7Bn%2B1%7D%7D%7B(n%2B1)!%7D%5Cleft(f%5E%7B(n)%7D(b)-f%5E%7B(n)%7D(a)%5Cright)%2B%5Cfrac%7B(-1)%5EN%7D%7BN!%7D%5Cint_a%5E%7Bb%7DB_N(%5Cleft%5C%7Bx%5Cright%5C%7D)f%5E%7B(N)%7D(x)%5Cmathrm%20dx

最后移项,就能得到大名鼎鼎的Euler-Maclaurin求和公式

%5Csum_%7Bn%3Da%7D%5Ebf(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dx%2B%5Cfrac%7Bf(b)%2Bf(a)%7D2%2B%5Csum_%7Bn%3D1%7D%5E%7BN-1%7D%5Cfrac%7BB_%7Bn%2B1%7D%7D%7B(n%2B1)!%7D%5Cleft(f%5E%7B(n)%7D(b)-f%5E%7B(n)%7D(a)%5Cright)-%5Cfrac%7B(-1)%5EN%7D%7BN!%7D%5Cint_a%5E%7Bb%7DB_N(%5Cleft%5C%7Bx%5Cright%5C%7D)f%5E%7B(N)%7D(x)%5Cmathrm%20dx

f(x)无穷阶可导,令N%5Crightarrow%20%5Cinfty,后面那个积分就趋于零,于是可以把它抬走,而在大于1的奇数上的伯努利数恒为零,就有

%5Csum_%7Bn%3Da%7D%5Ebf(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dx%2B%5Cfrac%7Bf(b)%2Bf(a)%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7BB_%7B2n%7D%7D%7B(2n)!%7D%5Cleft(f%5E%7B(2n-1)%7D(b)-f%5E%7B(2n-1)%7D(a)%5Cright)

总结

这一期我们得到了以下结论

正切函数的Maclaurin级数

%5Ctan%20x%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty(-1)%5E%7Bn%2B1%7D2%5E%7B2n%7D(2%5E%7B2n%7D-1)B_%7B2n%7D%5Cfrac%7Bx%5E%7B2n-1%7D%7D%7B(2n)!%7D

zeta函数在偶数上的值:

%5Czeta(2m)%3D(-1)%5E%7Bm%2B1%7D%5Cfrac%7BB_%7B2m%7D(2%5Cpi)%5E%7B2m%7D%7D%7B2(2m)!%7D

Euler-Maclaurin求和公式

%5Csum_%7Bn%3Da%7D%5Ebf(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dx%2B%5Cfrac%7Bf(b)%2Bf(a)%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7BB_%7B2n%7D%7D%7B(2n)!%7D%5Cleft(f%5E%7B(2n-1)%7D(b)-f%5E%7B(2n-1)%7D(a)%5Cright)

以上就是本期专栏的全部内容了,掰掰


伯努利数(2)——一些应用的评论 (共 条)

分享到微博请遵守国家法律