欢迎光临散文网 会员登陆 & 注册

高三—大一过度阶段一些不等式原理及其的证明

2022-11-18 17:20 作者:独眼的安提柯  | 我要投稿
{"ops":[{"insert":"1.柯西不等式积分形式—施瓦兹不等式\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b2.sanwen.net/b_article/006884b44e71eefdfee5450ccd49bd3c8d89dc01.jpg","width":1500,"height":2000,"size":1990445,"status":"loaded"}}},{"insert":"证明过程中只用了变限积分和求导并不困难 \n2.闽可夫斯基不等式\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b2.sanwen.net/b_article/5bc2fd69e33d3297db1b872a74f35d9166d3eb6d.jpg","width":1500,"height":2000,"size":1993188,"status":"loaded"}}},{"insert":"3加权琴生不等式\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b2.sanwen.net/b_article/e28857ecd526c010e1fd1f33c82f87c36db48173.jpg","width":1500,"height":2000,"size":1968929,"status":"loaded"}}},{"insert":"\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b2.sanwen.net/b_article/c1379ea63957c4f271bbba573905b6c667dca137.jpg","width":1500,"height":2000,"size":1949690,"status":"loaded"}}},{"insert":"4赫尔德不等式\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b2.sanwen.net/b_article/44a46691c62f58e87f102bc7558163bdd93553f7.jpg","width":1500,"height":2000,"size":1948729,"status":"loaded"}}},{"insert":"5广义权方和不等式\n\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b2.sanwen.net/b_article/bf5e42ce6e8f3e41734c0dafc88afa996bd1cca4.jpg","width":1500,"height":2000,"size":2030856,"status":"loaded"}}},{"insert":"6加权均值不等式(yonger不等式\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b2.sanwen.net/b_article/cedc1132333bdec035fd2bd3c6dafd110196aaaa.jpg","width":547,"height":150,"size":17935,"status":"loaded"}}},{"insert":"这个不等式的证明留给读者提示一下两边取对数 然后用上文讲过的加权琴生不等式即可证明 这里就不多说了\n"}]}

高三—大一过度阶段一些不等式原理及其的证明的评论 (共 条)

分享到微博请遵守国家法律