欢迎光临散文网 会员登陆 & 注册

表观和遗传在衰老中共同进退?看表观遗传衰老如何贯穿衰老主线

2022-12-22 14:44 作者:时光派官方  | 我要投稿



阅读重磅综述,快捷get衰老系统知识。大家好,这里是时光派《重磅综述》栏目,在这里,派派为你挑选大咖中的大咖,选读经典中的经典。本期的主题是,国内学者重磅之作,衰老重要标识表观遗传衰老相关综述——《衰老的表观遗传调控:对衰老和疾病干预的启示》。


衰老生物学发展近百年,衰老相关的九大标识早已深入人心,每一个都在衰老过程中发挥着无可替代的作用,但每一个衰老表现、每一种干预手段,大多针对多种衰老标识联合作用,在和其他衰老标识“合作”方面,表观遗传衰老尤为明显。

11月初,我国著名学者刘光慧教授、朱芳芳教授、任捷教授牵头,中国科学院和上海交通大学生物医学研究院多名学者联合编撰,在生物学顶刊《Nature》子刊上发文,综述了表观遗传调控在衰老生物学中的坚实理论基础地位和多方向靶点库作用,并就表观遗传的角度,为大家提供了各方面衰老干预的建议[1]。


限于篇幅,文中仅展示综述核心内容,想深入了解的读者可至文末领取原文及全文翻译文档。


*该资料仅供科研学习之用,未经授权严禁转载及使用。

*如有科学谬误敬请专家与读者朋友联系时光派公众号指正。


表观遗传学如同它名字所表达的那样,把“表观”和“遗传”联系起来研究,代表一种在不改变基因组DNA序列的情况下调节基因组功能的可逆机制[1]。而在原因机制尚未完全被破解的衰老生物学中,这一特性尤为突显。

1935年,衰老生物学正式起航;1953年,DNA结构被发现;14年后的1967年,表观遗传便正式入驻衰老生物学领域[2],从此开始和衰老生物学携手并进。


图注:衰老相关表观遗传学的部分发展历程


表观遗传在衰老过程中的改变主要可以分为四大类:DNA甲基化、组蛋白修饰、染色质重塑和RNA修饰


No.1

DNA甲基化


当一段基因的DNA上被安装了甲基,那么这段基因就不会表达[3-4],而衰老的重要表现就是,该沉默的基因没有安装甲基,而该表达的基因却被甲基扼制[5-6]。


图注:DNA甲基化模式及其与衰老的关系

No.2

组蛋白修饰


组蛋白修饰可以细分为:甲基化、乙酰化、磷酸化、泛素化、ADP核糖基化等[7]。其中最常见,且作为经典案例广为流传的是:组蛋白乙酰化——长寿蛋白sirtuins[8-9]。


图注:组蛋白乙酰化的经典案例:长寿蛋白sirtuins

No.3

染色质重塑


染色质重塑是细胞核内的一系列全基因组变化,从组蛋白成分和修饰的变化到染色质整体结构的改变,在细胞衰老过程中,染色质重塑也发挥着重要的作用[10]。


No.4

RNA修饰


DNA转录成RNA,而RNA翻译成蛋白质,RNA承担着基因和表型之间的纽带的作用,所以表观遗传不仅包括对DNA及其结合蛋白(组蛋白)的修饰,也包含对RNA的修饰[11]。

因篇幅有限,表观遗传调控的原理这里不加赘述,感兴趣的读者请至文末,添加hebe即可领取全文翻译。


表观遗传衰老为衰老生物学奠定了坚实的理论基础,同时在各种抗衰手段中,也少不了表观遗传调控的身影。

在这一部分,论文总结了目前主要使用的抗衰干预手段:小分子药物、重编程、衰老细胞清除策略和健康行为干预手段,并讨论了它们和表观遗传调控之间的相互作用。


图注:目前常见的抗衰干预手段

No.1

小分子药物


小分子药物虽然靶靶点相对单一,但是影响的衰老途径却不止一条,在干预衰老和治疗衰老相关疾病方面也极具潜力。


NAD+前体

大家耳熟能详的抗衰补剂成分NMN、NR等都是NAD+前体,在这些NAD+前体的影响下,随年龄增加而逐渐减少的体内NAD+可以得到补充,继而通过DNA修复和表观遗传调控发挥增加线粒体功能、改善认知功能等功效[12-13],并延长线虫、果蝇等模式生物的寿命[14]。

与表观遗传的相互影响

长寿蛋白sirtuins对组蛋白去乙酰化的影响高度依赖于NAD+,因此,NAD+在衰老表观遗传调控中是不可或缺的[15]。

临床试验进展

临床试验结果才是抗衰相关研究的金标准,而NAD+前体已经在临床试验中证实了自己。

NMN可增加糖尿病前期女性的肌肉胰岛素敏感性、胰岛素信号传导和肌肉重塑,并可预防与衰老相关的肌肉功能障碍,以及改善有氧能力、心血管健康、睡眠质量、疲劳和身体机能等[16-18];NR可抑制心力衰竭患者和降低帕金森病患者的炎性衰老情况[19]。


STACS

STACS是长寿蛋白sirtuins的激活剂[20],目前的STACS药物主要有白藜芦醇、SRT1720等,能通过对sirtuins的激活发挥增加胰岛素敏感性和运动功能、减轻血管内皮功能障碍等功能,并延长线虫、果蝇、蜜蜂和鱼类等的寿命[21]。

与表观遗传的相互影响

直接激活sirtuins,改变组蛋白的去乙酰化水平。

临床试验进展

STACS在临床前研究中表现出鼓舞人心的效果,但在临床试验中的结果并不那么令人满意,没有显著的抗衰临床反应[22]。


二甲双胍

二甲双胍是著名的降糖药,也是近些年热门的抗衰潜力物质,能通过广泛的表观遗传调控发挥作用,能改善认知障碍和神经变性[23]、慢性肾病[24]、白内障[25]、心脏线粒体功能障碍[26]等多种衰老相关疾病,并可延长小鼠寿命14%[27]。

与表观遗传的相互影响

二甲双胍可以通过改变S-腺苷甲硫氨酸(SAMe)/S-腺苷同型半胱氨酸(SAH)的比例来影响组蛋白甲基化[28];增加Bdnf基因的DNA甲基化水平[29];还可以调整小鼠和人类的microRNA表达水平[30-31]。

临床试验进展

临床数据显示,二甲双胍可以降低糖尿病、心血管疾病、脆弱和认知障碍的发病率,并改善外周血单核细胞中潜在的长寿效应因子[32]。


雷帕霉素

雷帕霉素是21世纪以来炙手可热的抗衰药物、美国抗衰金字项目ITP计划的招牌成果,已被证实可以改善一系列衰老相关病理状况,包括心血管功能障碍[33]、神经变性[34]、骨骼肌老化[35]、卵巢衰老[36]、衰老相关听力损失[37]等,并能以剂量依赖的方式延长雄性和雌性小鼠的中位和最大寿命[38]。

与表观遗传的相互作用

雷帕霉素能减弱大脑结构中与衰老相关的DNA甲基化变化,影响大脑衰老,还能减缓肝脏衰老的表观遗传特征[39]。

临床试验进展

尽管雷帕霉素在临床前研究中显示出令人兴奋的效果,但在临床试验中却不尽人意,雷帕霉素并没有改善人类受试者的认知功能或身体机能[40],也就意味着,雷帕霉素仍需要更多的实验研究。


图注:各种抗衰小分子药物的抗衰延寿效果

除了上述几种,其他多种小分子药物也都存在巨大的抗衰潜力,如抗糖尿病药物(钠-葡萄糖共转运蛋白-2抑制剂、阿卡波糖)、天然化合物(没食子酸、槲皮素)、抗氧化分子(N-乙酰基-L-半胱氨酸(NAC)、维生素C 、亚甲蓝)、抗高血压药物(血管紧张素转换酶抑制剂和血管紧张素受体阻滞剂),氯喹、阿司匹林、尿苷等等,但它们和表观遗传之间的关系还有待进一步研究。


No.2

细胞重编程策略


细胞重编程是近两年最具潜力、研发经费最充足的抗衰干预手段,通过将体细胞逆转到年轻状态来达到机体抗衰老的目的。

短短时间内,细胞重编程也的确取得了惊人的抗衰效果:为期13天的细胞重编程显着降低了人成纤维细胞的表观遗传年龄[41],生命早期的瞬时重编程也足以将转基因早衰小鼠的寿命延长15%[42]。

与表观遗传的相互作用

细胞重编程关键基因OSKM的持久表达可导致广泛的染色质重塑,从而逆转细胞状态,使其年轻化[43]。


图注:染色质重塑在衰老过程中的作用机制

No.3

健康行为干预


和小分子药物和细胞重编程相比,健康行为干预才是延缓衰老的最有效和最简单的方法,随着人们对积极健康干预的认识不断提高,各种研究表明,健康的生活方式可以改善不同动物和人类的衰老相关特征。


饮食/热量限制

作为“不打针不吃药”的抗衰干预方法典范,饮食/热量限制早在上个世纪衰老生物学伊始的时候便取得了世人的青睐。经过近一百年的锤炼,饮食/热量限制已被证明能减缓生物衰老,改善肝脏功能,减少氧化应激和衰老相关疾病的发病率[44],并延长实验动物的寿命[45]。

与表观遗传的相互作用

热量限制能显著抑制RNAm6A阅读蛋白的衰老相关下调[46],且在相关实验中,受试动物也能表现出表观遗传年龄的降低。

临床试验进展

饮食/热量限制早已被应用在人类身上,临床试验结果表明,热量限制可以减弱与衰老有关的生物标志物,如降低体重、增强胰岛素敏感性和葡萄糖耐受性,并改善主要的心脏代谢危险因素[47];同时,饮食干预已被证明可以减缓基于DNA甲基化的衰老生物标志物[48]。


运动

运动则是行为干预中的另一大“巨头”,虽然简单易行,但抗衰效果多多。通过运动,生物体能恢复活力[49]、并有益于保护神经[50]和延长寿命[51]。

与表观遗传的相互作用

运动可重塑骨骼肌中关键基因启动子上的DNA甲基化情况[52],还可通过通过抑制组蛋白去乙酰化没的功能来影响基因表达模式[53],此外,运动还可以调节几种有益miRNA的表达[54]。

临床试验进展

运动相关的临床干预研究中发现,运动可以逆转一系列与衰老有关的疾病,包括心力衰竭[55]、认知能力下降[56]、动脉粥样硬化[57]和胰岛素抵抗[58]等,并在改善的过程中与表观遗传调控密切相关[59]。


图注:饮食限制和运动等行为干预手段在抗衰中的作用

除饮食限制和运动外,健康行为干预中,昼夜节律的调整也能广泛影响生物的衰老进程和速度,但是它和表观遗传调控之间的相互作用尚不明确,还需要更多的研究来发现和证实。

除了小分子药物、细胞重编程和健康行为干预,衰老细胞清除策略(senolytics)也是抗衰干预手段中十分重要的一种,能达到非常显著的抗衰延寿功效,但其和表观遗传调控的关系相对较弱,仍需要进一步研究。

———///———

与其说是重要的衰老标识之一,表观遗传衰老更像是一根贯穿衰老的线,在这根线上,不仅挂满了衰老的原理、机制和作用靶点,也连接了很多抗衰老干预手段。

但是其他衰老标识是不是也会像表观遗传衰老一样,成为串起衰老的一根根线呢?表观遗传衰老这根线和其他衰老标识之间,又存在哪些连结和串扰呢?这些都还需要未来的研究来探索,当我们理清了衰老这张“网”,或许那时破解衰老便指日可待。


参考文献

[1] Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F., & Liu, G. H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal transduction and targeted therapy, 7(1), 374. https://doi.org/10.1038/s41392-022-01211-8

[2] Berdyshev, G. D., Korotaev, G. K., Boiarskikh, G. V., & Vaniushin, B. F. (1967). Nukleotidnyĭ sostav DNK i RNK somaticheskikh tkaneĭ gorbushi i ego izmenenie v technie neresta [Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning]. Biokhimiia (Moscow, Russia), 32(5), 988–993.

[3] Sailani, M. R., Halling, J. F., Møller, H. D., Lee, H., Plomgaard, P., Pilegaard, H., Snyder, M. P., & Regenberg, B. (2019). Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Scientific reports, 9(1), 3272. https://doi.org/10.1038/s41598-018-37895-8

[4] Maegawa, S., Hinkal, G., Kim, H. S., Shen, L., Zhang, L., Zhang, J., Zhang, N., Liang, S., Donehower, L. A., & Issa, J. P. (2010). Widespread and tissue specific age-related DNA methylation changes in mice. Genome research, 20(3), 332–340. https://doi.org/10.1101/gr.096826.109

[5] Wilson, V. L., Smith, R. A., Ma, S., & Cutler, R. G. (1987). Genomic 5-methyldeoxycytidine decreases with age. The Journal of biological chemistry, 262(21), 9948–9951.

[6] Ahuja, N., Li, Q., Mohan, A. L., Baylin, S. B., & Issa, J. P. (1998). Aging and DNA methylation in colorectal mucosa and cancer. Cancer research, 58(23), 5489–5494.

[7] Kouzarides T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705. https://doi.org/10.1016/j.cell.2007.02.005

[8] Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M. M., Mills, K. D., Patel, P., Hsu, J. T., Hong, A. L., Ford, E., Cheng, H. L., Kennedy, C., Nunez, N., Bronson, R., Frendewey, D., … Alt, F. W. (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124(2), 315–329. https://doi.org/10.1016/j.cell.2005.11.044

[9] Gong, H., Pang, J., Han, Y., Dai, Y., Dai, D., Cai, J., & Zhang, T. M. (2014). Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Molecular medicine reports, 10(6), 3296–3302. https://doi.org/10.3892/mmr.2014.2648

[10] Huang, B., Zhong, D., Zhu, J., An, Y., Gao, M., Zhu, S., Dang, W., Wang, X., Yang, B., & Xie, Z. (2020). Inhibition of histone acetyltransferase GCN5 extends lifespan in both yeast and human cell lines. Aging cell, 19(4), e13129. https://doi.org/10.1111/acel.13129

[11] Liu, Z., Ji, Q., Ren, J., Yan, P., Wu, Z., Wang, S., Sun, L., Wang, Z., Li, J., Sun, G., Liang, C., Sun, R., Jiang, X., Hu, J., Ding, Y., Wang, Q., Bi, S., Wei, G., Cao, G., Zhao, G., … Liu, G. H. (2022). Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Developmental cell, 57(11), 1347–1368.e12. https://doi.org/10.1016/j.devcel.2022.05.004

[12] Frye, M., Harada, B. T., Behm, M., & He, C. (2018). RNA modifications modulate gene expression during development. Science (New York, N.Y.), 361(6409), 1346–1349. https://doi.org/10.1126/science.aau1646

[13] Yaku, K., Okabe, K., & Nakagawa, T. (2018). NAD metabolism: Implications in aging and longevity. Ageing research reviews, 47, 1–17. https://doi.org/10.1016/j.arr.2018.05.006

[14] Gu, X. , Yao, H. , Ilmin, K. , & Wang, G. . (2022). Small-molecule activation of nampt as a potential neuroprotective strategy. Life Medicine.

[15] Fang, E. F., Hou, Y., Lautrup, S., Jensen, M. B., Yang, B., SenGupta, T., Caponio, D., Khezri, R., Demarest, T. G., Aman, Y., Figueroa, D., Morevati, M., Lee, H. J., Kato, H., Kassahun, H., Lee, J. H., Filippelli, D., Okur, M. N., Mangerich, A., Croteau, D. L., … Bohr, V. A. (2019). NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature communications, 10(1), 5284. https://doi.org/10.1038/s41467-019-13172-8

[16] Shen, W. et al. Peroxisome proliferator-activated receptor γ coactivator 1α maintains NAD+ bioavailability protecting against steatohepatitis. Life Med. lnac031

[17] Yoshino, M., Yoshino, J., Kayser, B. D., Patti, G. J., Franczyk, M. P., Mills, K. F., Sindelar, M., Pietka, T., Patterson, B. W., Imai, S. I., & Klein, S. (2021). Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science (New York, N.Y.), 372(6547), 1224–1229. https://doi.org/10.1126/science.abe9985

[18] Igarashi, M., Nakagawa-Nagahama, Y., Miura, M., Kashiwabara, K., Yaku, K., Sawada, M., Sekine, R., Fukamizu, Y., Sato, T., Sakurai, T., Sato, J., Ino, K., Kubota, N., Nakagawa, T., Kadowaki, T., & Yamauchi, T. (2022). Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. npj aging, 8(1), 5. https://doi.org/10.1038/s41514-022-00084-z

[19] Kim, M., Seol, J., Sato, T., Fukamizu, Y., Sakurai, T., & Okura, T. (2022). Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients, 14(4), 755. https://doi.org/10.3390/nu14040755

[20] Brakedal, B., Dölle, C., Riemer, F., Ma, Y., Nido, G. S., Skeie, G. O., Craven, A. R., Schwarzlmüller, T., Brekke, N., Diab, J., Sverkeli, L., Skjeie, V., Varhaug, K., Tysnes, O. B., Peng, S., Haugarvoll, K., Ziegler, M., Grüner, R., Eidelberg, D., & Tzoulis, C. (2022). The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease. Cell metabolism, 34(3), 396–407.e6. https://doi.org/10.1016/j.cmet.2022.02.001

[21] Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer, B., & Sinclair, D. A. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191–196. https://doi.org/10.1038/nature01960

[22] Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nature reviews. Molecular cell biology, 17(11), 679–690. https://doi.org/10.1038/nrm.2016.93

[23] Dai, H., Sinclair, D. A., Ellis, J. L., & Steegborn, C. (2018). Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacology & therapeutics, 188, 140–154. https://doi.org/10.1016/j.pharmthera.2018.03.004

[24] Hong, S., Nagayach, A., Lu, Y., Peng, H., Duong, Q. A., Pham, N. B., Vuong, C. A., & Bazan, N. G. (2021). A high fat, sugar, and salt Western diet induces motor-muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliorative action of metformin. CNS neuroscience & therapeutics, 27(12), 1458–1471. https://doi.org/10.1111/cns.13726

[25] Kim, H., Yu, M. R., Lee, H., Kwon, S. H., Jeon, J. S., Han, D. C., & Noh, H. (2021). Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging cell, 20(2), e13317. https://doi.org/10.1111/acel.13317

[26] Chen, M., Fu, Y., Wang, X., Wu, R., Su, D., Zhou, N., & Qi, Y. (2022). Metformin protects lens epithelial cells against senescence in a naturally aged mouse model. Cell death discovery, 8(1), 8. https://doi.org/10.1038/s41420-021-00800-w

[27] Chen, Q., Thompson, J., Hu, Y., & Lesnefsky, E. J. (2021). Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging, 13(6), 7828–7845. https://doi.org/10.18632/aging.202858

[28] Smith, D. L., Jr, Elam, C. F., Jr, Mattison, J. A., Lane, M. A., Roth, G. S., Ingram, D. K., & Allison, D. B. (2010). Metformin supplementation and life span in Fischer-344 rats. The journals of gerontology. Series A, Biological sciences and medical sciences, 65(5), 468–474. https://doi.org/10.1093/gerona/glq033

[29] Cabreiro, F., Au, C., Leung, K. Y., Vergara-Irigaray, N., Cochemé, H. M., Noori, T., Weinkove, D., Schuster, E., Greene, N. D., & Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 153(1), 228–239. https://doi.org/10.1016/j.cell.2013.02.035

[30] Wang, Y., Liu, B., Yang, Y., Wang, Y., Zhao, Z., Miao, Z., & Zhu, J. (2019). Metformin exerts antidepressant effects by regulated DNA hydroxymethylation. Epigenomics, 11(6), 655–667. https://doi.org/10.2217/epi-2018-0187

[31] Noren Hooten, N., Martin-Montalvo, A., Dluzen, D. F., Zhang, Y., Bernier, M., Zonderman, A. B., Becker, K. G., Gorospe, M., de Cabo, R., & Evans, M. K. (2016). Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging cell, 15(3), 572–581. https://doi.org/10.1111/acel.12469

[32] Zhang, S., Zhang, R., Qiao, P., Ma, X., Lu, R., Wang, F., Li, C., E, L., & Liu, H. (2021). Metformin-Induced MicroRNA-34a-3p Downregulation Alleviates Senescence in Human Dental Pulp Stem Cells by Targeting CAB39 through the AMPK/mTOR Signaling Pathway. Stem cells international, 2021, 6616240. https://doi.org/10.1155/2021/6616240

[33] Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., Nathan, D. M., & Diabetes Prevention Program Research Group (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine, 346(6), 393–403. https://doi.org/10.1056/NEJMoa012512

[34] Quarles, E., Basisty, N., Chiao, Y. A., Merrihew, G., Gu, H., Sweetwyne, M. T., Fredrickson, J., Nguyen, N. H., Razumova, M., Kooiker, K., Moussavi-Harami, F., Regnier, M., Quarles, C., MacCoss, M., & Rabinovitch, P. S. (2020). Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging cell, 19(2), e13086. https://doi.org/10.1111/acel.13086

[35] Van Skike, C. E., Hussong, S. A., Hernandez, S. F., Banh, A. Q., DeRosa, N., & Galvan, V. (2021). mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 41(19), 4305–4320. https://doi.org/10.1523/JNEUROSCI.2144-20.2021

[36] Ham, D. J., Börsch, A., Chojnowska, K., Lin, S., Leuchtmann, A. B., Ham, A. S., Thürkauf, M., Delezie, J., Furrer, R., Burri, D., Sinnreich, M., Handschin, C., Tintignac, L. A., Zavolan, M., Mittal, N., & Rüegg, M. A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6

[37] Garcia, D. N., Saccon, T. D., Pradiee, J., Rincón, J. A. A., Andrade, K. R. S., Rovani, M. T., Mondadori, R. G., Cruz, L. A. X., Barros, C. C., Masternak, M. M., Bartke, A., Mason, J. B., & Schneider, A. (2019). Effect of caloric restriction and rapamycin on ovarian aging in mice. GeroScience, 41(4), 395–408. https://doi.org/10.1007/s11357-019-00087-x

[38] Altschuler, R. A., Kabara, L., Martin, C., Kanicki, A., Stewart, C. E., Kohrman, D. C., & Dolan, D. F. (2021). Rapamycin Added to Diet in Late Mid-Life Delays Age-Related Hearing Loss in UMHET4 Mice. Frontiers in cellular neuroscience, 15, 658972. https://doi.org/10.3389/fncel.2021.658972

[39] Strong, R., Miller, R. A., Bogue, M., Fernandez, E., Javors, M. A., Libert, S., Marinez, P. A., Murphy, M. P., Musi, N., Nelson, J. F., Petrascheck, M., Reifsnyder, P., Richardson, A., Salmon, A. B., Macchiarini, F., & Harrison, D. E. (2020). Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects. Aging cell, 19(11), e13269. https://doi.org/10.1111/acel.13269

[40] Yin, Z., Guo, X., Qi, Y., Li, P., Liang, S., Xu, X., & Shang, X. (2022). Dietary Restriction and Rapamycin Affect Brain Aging in Mice by Attenuating Age-Related DNA Methylation Changes. Genes, 13(4), 699. https://doi.org/10.3390/genes13040699

[41] Kraig, E., Linehan, L. A., Liang, H., Romo, T. Q., Liu, Q., Wu, Y., Benavides, A. D., Curiel, T. J., Javors, M. A., Musi, N., Chiodo, L., Koek, W., Gelfond, J. A. L., & Kellogg, D. L., Jr (2018). A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: Immunological, physical performance, and cognitive effects. Experimental gerontology, 105, 53–69. https://doi.org/10.1016/j.exger.2017.12.026

[42] Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C. D., Hernando-Herraez, I., Stubbs, T. M., Milagre, I., & Reik, W. (2022). Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. eLife, 11, e71624. https://doi.org/10.7554/eLife.71624

[43] Alle, Q., Le Borgne, E., Bensadoun, P., Lemey, C., Béchir, N., Gabanou, M., Estermann, F., Bertrand-Gaday, C., Pessemesse, L., Toupet, K., Desprat, R., Vialaret, J., Hirtz, C., Noël, D., Jorgensen, C., Casas, F., Milhavet, O., & Lemaitre, J. M. (2022). A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan. Aging cell, 21(11), e13714. https://doi.org/10.1111/acel.13714

[44] Koche, R. P., Smith, Z. D., Adli, M., Gu, H., Ku, M., Gnirke, A., Bernstein, B. E., & Meissner, A. (2011). Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell stem cell, 8(1), 96–105. https://doi.org/10.1016/j.stem.2010.12.001

[45] Rochon, J., Bales, C. W., Ravussin, E., Redman, L. M., Holloszy, J. O., Racette, S. B., Roberts, S. B., Das, S. K., Romashkan, S., Galan, K. M., Hadley, E. C., Kraus, W. E., & CALERIE Study Group (2011). Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. The journals of gerontology. Series A, Biological sciences and medical sciences, 66(1), 97–108. https://doi.org/10.1093/gerona/glq168

[46] Weindruch, R., Walford, R. L., Fligiel, S., & Guthrie, D. (1986). The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. The Journal of nutrition, 116(4), 641–654. https://doi.org/10.1093/jn/116.4.641

[47] Ma, S., Sun, S., Geng, L., Song, M., Wang, W., Ye, Y., Ji, Q., Zou, Z., Wang, S., He, X., Li, W., Esteban, C. R., Long, X., Guo, G., Chan, P., Zhou, Q., Belmonte, J. C. I., Zhang, W., Qu, J., & Liu, G. H. (2020). Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell, 180(5), 984–1001.e22. https://doi.org/10.1016/j.cell.2020.02.008

[48] Kraus, W. E., Bhapkar, M., Huffman, K. M., Pieper, C. F., Krupa Das, S., Redman, L. M., Villareal, D. T., Rochon, J., Roberts, S. B., Ravussin, E., Holloszy, J. O., Fontana, L., & CALERIE Investigators (2019). 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. The lancet. Diabetes & endocrinology, 7(9), 673–683. https://doi.org/10.1016/S2213-8587(19)30151-2

[49] Fitzgerald, K. N., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., Henkel, J., Twedt, M. W., Giannopoulou, D., Herdell, J., Logan, S., & Bradley, R. (2021). Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging, 13(7), 9419–9432. https://doi.org/10.18632/aging.202913

[50] Rubenstein, A. B., Hinkley, J. M., Nair, V. D., Nudelman, G., Standley, R. A., Yi, F., Yu, G., Trappe, T. A., Bamman, M. M., Trappe, S. W., Sparks, L. M., Goodpaster, B. H., Vega, R. B., Sealfon, S. C., Zaslavsky, E., & Coen, P. M. (2022). Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. American journal of physiology. Endocrinology and metabolism, 322(3), E260–E277. https://doi.org/10.1152/ajpendo.00378.2021

[51] van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(38), 8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005

[52] Murach, K. A., Dimet-Wiley, A. L., Wen, Y., Brightwell, C. R., Latham, C. M., Dungan, C. M., Fry, C. S., & Watowich, S. J. (2022). Late-life exercise mitigates skeletal muscle epigenetic aging. Aging cell, 21(1), e13527. https://doi.org/10.1111/acel.13527

[53] Barrès, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O'Gorman, D. J., & Zierath, J. R. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. Cell metabolism, 15(3), 405–411. https://doi.org/10.1016/j.cmet.2012.01.001

[54] Gomez-Pinilla, F., Zhuang, Y., Feng, J., Ying, Z., & Fan, G. (2011). Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. The European journal of neuroscience, 33(3), 383–390. https://doi.org/10.1111/j.1460-9568.2010.07508.x

[55] Ogasawara, R., Akimoto, T., Umeno, T., Sawada, S., Hamaoka, T., & Fujita, S. (2016). MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiological genomics, 48(4), 320–324. https://doi.org/10.1152/physiolgenomics.00124.2015

[56] Hieda, M., Sarma, S., Hearon, C. M., Jr, MacNamara, J. P., Dias, K. A., Samels, M., Palmer, D., Livingston, S., Morris, M., & Levine, B. D. (2021). One-Year Committed Exercise Training Reverses Abnormal Left Ventricular Myocardial Stiffness in Patients With Stage B Heart Failure With Preserved Ejection Fraction. Circulation, 144(12), 934–946. https://doi.org/10.1161/CIRCULATIONAHA.121.054117

[57] Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., Bäckman, L., Hänninen, T., Jula, A., Laatikainen, T., Lindström, J., Mangialasche, F., Paajanen, T., Pajala, S., Peltonen, M., Rauramaa, R., Stigsdotter-Neely, A., Strandberg, T., Tuomilehto, J., Soininen, H., … Kivipelto, M. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet (London, England), 385(9984), 2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5

[58] Madden, K. M., Lockhart, C., Cuff, D., Potter, T. F., & Meneilly, G. S. (2009). Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia. Diabetes care, 32(8), 1531–1535. https://doi.org/10.2337/dc09-0149

[59] Lanza, I. R., Short, D. K., Short, K. R., Raghavakaimal, S., Basu, R., Joyner, M. J., McConnell, J. P., & Nair, K. S. (2008). Endurance exercise as a countermeasure for aging. Diabetes, 57(11), 2933–2942. https://doi.org/10.2337/db08-0349

表观和遗传在衰老中共同进退?看表观遗传衰老如何贯穿衰老主线的评论 (共 条)

分享到微博请遵守国家法律