再谈数学归纳法证明:每个大于等于9的奇数都是3+两个奇素数之和
运用数学归纳法证明:每个大于等于9的奇数都是3+两个奇素数之和
崔坤
中国青岛即墨,266200,E-mail:cwkzq@126.com
摘要: 数学家刘建亚在《哥德巴赫猜想与潘承洞》中说:“我们可以把这个问题反过来思考, 已知奇数N可以表成三个素数之和, 假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3, 那么我们也就证明了偶数的哥德巴赫猜想。”, 直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。
关键词:三素数定理,奇素数,加法交换律结合律
中图分类号:O156 文献标识码: A
Mathematical induction proves that every odd number greater than or equal to 9 is the sum of 3 + two odd prime numbers
abstract:Mathematician Liu Jianya said in "Goldbach Conjecture and Pan Chengdong": "We can think about this problem in reverse. Knowing that the odd number N can be expressed as the sum of three prime numbers, if it can be proved that one of the three prime numbers is very Small, for example, the first prime number can always be 3, then we have proved Goldbach’s conjecture for even numbers.” It was not until 2013 that Peruvian mathematician Harold Hoofgert completely proved the three prime number theorem.
keywords:Triple Prime Theorem, Odd Prime Numbers, Commutative Law of Addition, Associative Law
证明:
根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:
每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。
它用下列公式表示:Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,
则Q=q1+q2+q3 根据加法交换律结合律,不妨设:q1≥q2≥q3≥3,
则Q-3=q1+q2+q3-3 显见:有且仅有q3=3时,Q-3=q1+q2,否则,奇数9,11,13都是三素数定理的反例。
即每个大于等于6的偶数都是两个奇素数之和
推论Q=3+q1+q2,即每个大于等于9的奇数都是3+两个奇素数之和。
我们运用数学归纳法做如下证明:
给出首项为9,公差为2的等差数列:Qn=7+2n:{9,11,13,15,17,.....}
Q1= 9
Q2= 11
Q3= 13
Q4= 15
.......
Qn=7+2n=3+q1+q2,(其中奇素数q1≥q2≥3,奇数Qn≥9,n为正整数)
数学归纳法:
第一步:当n=1时 ,Q1=9 时 ,Q1=9=3+q1+q2=3+3+3成立
第二步:假设 :n=k时,Qk=3+qk1+qk2,奇素数:qk1≥3,qk2≥3,成立。
当n=k+1时,Q(k+1)=Qk+2=3+qk1+qk2+2=5+qk1+qk2
此时有且仅有2种情况:
A情况:qk1+2不为素数或者qk2+2不为素数时,Qk+2=Q(k+1)=5+qk1+qk2
即每个大于等于11的奇数都是5+两个奇素数之和,从而每个大于等于6的偶数都是两个奇素数之和。
而这个结论与“每个大于等于9的奇数都是3+两个奇素数之和”是等价的
即:Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,奇素数:qk3≥3,qk4≥3
B情况:
(1)若qk1+2为qk1的孪生素数P,
则:Qk+2=5+qk1+qk2=3+P+qk2,即每个大于等于11的奇数都是3+两个奇素数之和
(2) 若qk2+2为qk2的孪生素数P”,
则:Qk+2=5+qk1+qk2=3+P”+qk1,即每个大于等于11的奇数都是3+两个奇素数之和
综上所述,对于任意正整数n命题均成立,即:每个大于等于9的奇数都是3+两个奇素数之和
结论:每个大于等于9的奇数都是3+两个奇素数之和,Q=3+q1+q2,(奇素数q1≥q2≥3,奇数Q≥9)
参考文献:
[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]