欢迎光临散文网 会员登陆 & 注册

“法弦”的最小值(2023新高考Ⅰ圆锥曲线)

2023-07-08 14:12 作者:数学老顽童  | 我要投稿

在直角坐标系xOy中,点Px轴的距离等于点P到点%5Cleft(%200%2C%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20的距离,记动点P的轨迹为W.

(1)求W的方程;

(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3%5Csqrt%7B3%7D.

解:(1)设点P的坐标为%5Cleft(%20x%2Cy%20%5Cright)%20,由题可知:

%5Cleft%7C%20y%20%5Cright%7C%3D%5Csqrt%7B%5Cleft(%20x-0%20%5Cright)%20%5E2%2B%5Cleft(%20y-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5E2%7D

化简得:%5Ccolor%7Bred%7D%7By%3Dx%5E2%2B%5Cfrac%7B1%7D%7B4%7D%7D.

(2)不妨设ABDW上,设A的坐标为%5Cleft(%20x_0%2Cx_%7B0%7D%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B4%7D%20%5Cright)%20

设直线ABAD的斜率分别为mn,不妨设%5Ccolor%7Bred%7D%7Bn%3C0%3Cm%7D

且易知%5Ccolor%7Bred%7D%7Bmn%3D-1%7D.

直线AB的方程为

y-%5Cleft(%20x_%7B0%7D%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B4%7D%20%5Cright)%20%3Dm%5Cleft(%20x-x_0%20%5Cright)%20

W联立得:

%5Cleft(%20x-x_0%20%5Cright)%20%5Cleft%5B%20x-%5Cleft(%20m-x_0%20%5Cright)%20%5Cright%5D%20%3D0

%5Ccolor%7Bred%7D%7Bx_B%3Dm-x_0%7D,故

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7B%5Cleft%7C%20AB%20%5Cright%7C%7D%26%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20x_0-%5Cleft(%20m-x_0%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-m%20%5Cright%7C%7D%5C%5C%0A%5Cend%7Baligned%7D

同理:%5Ccolor%7Bred%7D%7B%5Cleft%7C%20AD%20%5Cright%7C%3D%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-n%20%5Cright%7C%7D.

所以:

%5Ccolor%7Bred%7D%7B%5Cleft%7C%20AB%20%5Cright%7C%2B%5Cleft%7C%20AD%20%5Cright%7C%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-m%20%5Cright%7C%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-n%20%5Cright%7C%7D

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x_0%20%5Cright)%20%7D%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-m%20%5Cright%7C%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-n%20%5Cright%7C

其中

%5Ccolor%7Bred%7D%7Bx_0%5Cin%20%5Cleft(%20-%5Cinfty%20%2C%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%5Ccup%20%5Cleft(%20%5Cfrac%7Bn%7D%7B2%7D%2C%5Cfrac%7Bm%7D%7B2%7D%20%5Cright)%20%5Ccup%20%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%2C%2B%5Cinfty%20%5Cright)%20%7D


f%5Cleft(%20x_0%20%5Cright)%20%3D%5Cbegin%7Bcases%7D%09%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%20m-2x_0%20%5Cright)%7D%20%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%20n-2x_0%20%5Cright)%7D%20%2C%5Ccolor%7Bred%7D%7Bx%3C%5Cfrac%7Bn%7D%7B2%7D%7D%2C%5C%5C%09%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%20m-2x_0%20%5Cright)%7D%20%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%202x_0-n%20%5Cright)%7D%20%2C%5Ccolor%7Bred%7D%7B%5Cfrac%7Bn%7D%7B2%7D%3Cx%3C%5Cfrac%7Bm%7D%7B2%7D%7D%2C%5C%5C%09%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%202x_0-m%20%5Cright)%7D%20%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%202x_0-n%20%5Cright)%7D%20%2C%5Ccolor%7Bred%7D%7Bx%3E%5Cfrac%7Bm%7D%7B2%7D%7D%2C%5C%5C%5Cend%7Bcases%7D

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20-%5Cinfty%20%2C%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%7Df%5Cleft(%20x_0%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Csearrow%20%7D

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%2C%2B%5Cinfty%20%5Cright)%20%7Df%5Cleft(%20x_0%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x_0%20%5Cright)%20%3E%5Cmin%20%5Cleft%5C%7B%20f%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%20%5Cright)%20%2Cf%5Cleft(%20%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%5Cright%5C%7D%20%7D.

%5Cbegin%7Baligned%7D%0A%09f%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%20%5Cright)%20%26%3D%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20m-n%20%5Cright%7C%5C%5C%0A%09%26%3D%5Csqrt%7B%5Cleft(%20-%5Cfrac%7B1%7D%7Bm%7D%20%5Cright)%20%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20m-%5Cleft(%20-%5Cfrac%7B1%7D%7Bm%7D%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Csqrt%7B%5Cfrac%7B%5Cleft(%20m%5E2%2B1%20%5Cright)%20%5E3%7D%7Bm%5E4%7D%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Cbegin%7Baligned%7D%0A%09f%5Cleft(%20%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%26%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20n-m%20%5Cright%7C%5C%5C%0A%09%26%3D%5Csqrt%7B%5Cleft(%20-%5Cfrac%7B1%7D%7Bn%7D%20%5Cright)%20%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20-%5Cfrac%7B1%7D%7Bn%7D-n%20%5Cright%7C%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Csqrt%7B%5Cfrac%7B%5Cleft(%20n%5E2%2B1%20%5Cright)%20%5E3%7D%7Bn%5E4%7D%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Ccolor%7Bred%7D%7Bg%5Cleft(%20t%20%5Cright)%20%3D%5Csqrt%7B%5Cfrac%7B%5Cleft(%20t%2B1%20%5Cright)%20%5E3%7D%7Bt%5E2%7D%7D%7Dt%5Cin%20%5Cleft(%200%2C%2B%5Cinfty%20%5Cright)%20

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x_0%20%5Cright)%20%3Eg%5Cleft(%20t%20%5Cright)%20_%7B%5Cmin%7D%7D.

%5Cbegin%7Baligned%7D%0A%09g'%5Cleft(%20t%20%5Cright)%20%26%3D%5Cfrac%7B1%7D%7B2%5Csqrt%7B%5Cfrac%7B%5Cleft(%20t%2B1%20%5Cright)%20%5E3%7D%7Bt%5E2%7D%7D%7D%5Ccdot%20%5Cfrac%7B3%5Cleft(%20t%2B1%20%5Cright)%20%5E2%5Ccdot%20t%5E2-%5Cleft(%20t%2B1%20%5Cright)%20%5E3%5Ccdot%202t%7D%7Bt%5E4%7D%5C%5C%0A%09%26%3D%5Cfrac%7B%5Csqrt%7Bt%2B1%7D%5Ccolor%7Bred%7D%7B%5Cleft(%20t-2%20%5Cright)%7D%7D%7B2t%5E2%7D%5C%5C%0A%5Cend%7Baligned%7D

g'%5Cleft(%20t%20%5Cright)%20%3D0,得t%3D2

t%5Cin%20%5Cleft(%200%2C2%20%5Cright)%20g%E2%80%99%5Cleft(%20t%20%5Cright)%20%3C0g%5Cleft(%20t%20%5Cright)%20%5Csearrow%20

t%5Cin%20%5Cleft(%202%2C%2B%5Cinfty%20%5Cright)%20g'%5Cleft(%20t%20%5Cright)%20%3E0g%5Cleft(%20t%20%5Cright)%20%5Cnearrow%20

g%5Cleft(%20t%20%5Cright)%20_%7B%5Cmin%7D%3Dg%5Cleft(%202%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D%7D.

此即图中弦%5Ccolor%7Bred%7D%7BAQ%7D长度的最小值).

故矩形ABCD的周长大于3%5Csqrt%7B3%7D.

此题中的不等式链:

%5Cleft%7C%20AB%20%5Cright%7C%2B%5Cleft%7C%20AD%20%5Cright%7C%3E%5Cleft%7C%20AQ%20%5Cright%7C%5Cgeqslant%20%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D.

%5Cleft%7C%20AB%20%5Cright%7C%2B%5Cleft%7C%20AD%20%5Cright%7C之所以不能等于%5Cleft%7C%20AQ%20%5Cright%7C是因为:

%5Cleft%7C%20AB%20%5Cright%7C%5Cleft%7C%20AD%20%5Cright%7C都不能为%5Ccolor%7Bred%7D0.

下个新定义:

我们把过抛物线x%5E2%3D2py上一点M%5Cleft(%20x_0%2Cy_0%20%5Cright)%20,且与M处的切线垂直的弦MN,叫做抛物线的法弦并且一般地,法弦长

%5Ccolor%7Bred%7D%7B%5Cleft%7C%20MN%20%5Cright%7C%5Cgeqslant%203%5Csqrt%7B3%7Dp%7D

当且仅当%5Ccolor%7Bred%7D%7By_0%3Dp%7D时,取得最小值.

“法弦”的最小值(2023新高考Ⅰ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律