欢迎光临散文网 会员登陆 & 注册

2023浙江大学强基数学逐题解析(5)

2023-06-21 00:57 作者:CHN_ZCY  | 我要投稿

封面:安達としまむら

作画:kagami

https://www.pixiv.net/artworks/85618946


12. 下列说法正确的是

A. 自然数集合与有理数集合间无双射

B. 有理数集合与实数集合间无双射

C. 实数集合与整数集合间无双射

D. 以上都不对

答案  BC

解析  

A. 我们将%5Cfrac%7Bp%7D%7Bq%7D%5Cleft(p%5Cin%5Cmathbb%7BN%7D%5E*%2Cq%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)按如下顺序排成数列%5Cleft%5C%7Br_n%5Cright%5C%7D

%5Cfrac%7B1%7D%7B1%7D%2C%5Cfrac%7B2%7D%7B1%7D%2C%5Cfrac%7B1%7D%7B2%7D%2C%5Cfrac%7B3%7D%7B1%7D%2C%5Cfrac%7B2%7D%7B2%7D%2C%5Cfrac%7B1%7D%7B3%7D%2C%5Cfrac%7B4%7D%7B1%7D%2C%5Cfrac%7B3%7D%7B2%7D%2C%5Cfrac%7B2%7D%7B3%7D%2C%5Cfrac%7B1%7D%7B4%7D%2C%5Ccdots

然后将其中满足%5Cleft(p%2Cq%5Cright)%3D1的项对应的n从小到大排成%5Cleft%5C%7Ba_n%5Cright%5C%7D.

构造f_%2B%3A%5Cmathbb%7BN%7D%5E*%20%5Crightarrow%20%5Cmathbb%7BQ%7D%5E*,满足

f_%2B%5Cleft(n%5Cright)%3Dr_%7Ba_n%7D%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)

f_%2B是一个双射.

利用交替排列正负有理数的方法,构造f%3A%5Cmathbb%7BN%7D%20%5Crightarrow%20%5Cmathbb%7BQ%7D满足:

f%5Cleft(0%5Cright)%3D0

f%5Cleft(2n-1%5Cright)%3D-f_%2B%5Cleft(n%5Cright)%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)

f%5Cleft(2n%5Cright)%3Df_%2B%5Cleft(n%5Cright)%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)

f是一个双射.

所以,自然数集合与有理数集合间存在双射.

故A说法不正确.

B. 由A知,%5Cmathbb%7BQ%7D%5Cmathbb%7BN%7D等势.

我们证明以下引理:

引理1  对任意x%5Cin%5Cmathbb%7BR%7D和区间%5Cleft%5Ba%2Cb%5Cright%5D%5Cleft(a%3Cb%5Cright),存在c%2Cd%5Cleft(c%3Cd%5Cright)满足%5Cleft%5Bc%2Cd%5Cright%5D%20%5Csubseteq%20%5Cleft%5Ba%2Cb%5Cright%5Dx%20%5Cnotin%20%5Cleft%5Bc%2Cd%5Cright%5D.

证明  若x%5Cnotin%5Cleft%5Ba%2Cb%5Cright%5D,则只需

a%5Cleq%20c%3Cd%5Cleq%20b

显然存在.

x%3Da,则只需

a%3C%20c%3Cd%5Cleq%20b

显然存在.

x%5Cin%20%5Cleft(a%2Cb%5Cright),则只需

a%5Cleq%20c%3Cd%3Cx%3Cb%20%E6%88%96a%3Cx%3Cc%3Cd%5Cleq%20b

显然存在.

x%3Db,则只需

a%5Cleq%20c%3Cd%3C%20b

显然存在.

综上,对任意x%5Cin%5Cmathbb%7BR%7D和区间%5Cleft%5Ba%2Cb%5Cright%5D%5Cleft(a%3Cb%5Cright),存在c%2Cd%5Cleft(c%3Cd%5Cright)满足%5Cleft%5Bc%2Cd%5Cright%5D%20%5Csubseteq%20%5Cleft%5Ba%2Cb%5Cright%5Dx%20%5Cnotin%20%5Cleft%5Bc%2Cd%5Cright%5D. 引理1得证.

引理2  对任意L%3E0,在引理1的条件下,都存在c%2Cd满足

0%3Cd-c%3CL

证明  对于引理1中取得的任意%5Cleft%5Bc%2Cd%5Cright%5D,若0%3Cd-c%3CL,结论成立;若d-c%5Cgeq%20L,则一定存在%5Cleft%5Bc%2Cd%5Cright%5D的某个真子集%5Cleft%5Bc'%2Cd'%5Cright%5D满足0%3Cd'-c'%3CL,结论成立. 引理2得证.

假设%5Cmathbb%7BR%7D%5Cmathbb%7BN%7D等势,即%5Cmathbb%7BR%7D%3D%5Cbigcup_%7Bn%5Cin%5Cmathbb%7BN%7D%7D%5E%7B%7D%5Cleft%5C%7Bx_n%5Cright%5C%7D%20.

存在%5Cleft%5Ba_0%2Cb_0%5Cright%5D%20%5Csubseteq%20%5Cmathbb%7BR%7D满足

x_0%20%5Cnotin%20%5Cleft%5Ba_0%2Cb_0%5Cright%5D

0%3Cb_0-a_0%3C%5Cfrac%7B1%7D%7B2%5E0%7D

对任意n%5Cin%20%5Cmathbb%7BN%7D%5E*,存在%5Cleft%5Ba_n%2Cb_n%5Cright%5D%20%5Csubseteq%20%5Cleft%5Ba_%7Bn-1%7D%2Cb_%7Bn-1%7D%5Cright%5D满足

x_n%20%5Cnotin%20%5Cleft%5Ba_n%2Cb_n%5Cright%5D

0%3Cb_n-a_n%3C%5Cfrac%7B1%7D%7B2%5En%7D

由此,%5Cleft%5C%7Ba_n%5Cright%5C%7D_%7Bn%5Cin%5Cmathbb%7BN%7D%7D%5Cleft%5C%7Bb_n%5Cright%5C%7D_%7Bn%5Cin%5Cmathbb%7BN%7D%7D均为%5Cmathrm%7BCauchy%7D数列,因此%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20a_n%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20b_n均存在.

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Cleft(b_n-a_n%5Cright)%3D0,所以

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20a_n%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20b_n

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20a_n%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20b_n%3Ds%20%5Cin%20%5Cmathbb%7BR%7D

则对于任意n%5Cin%20%5Cmathbb%7BN%7Da_n%3Cs%3Cb_n.

由于对于任意n%5Cin%20%5Cmathbb%7BN%7Dx_n%20%5Cnotin%20%5Cleft%5Ba_n%2Cb_n%5Cright%5D

所以对于任意n%5Cin%20%5Cmathbb%7BN%7Dx_n%20%5Cneq%20s.

这说明s%20%5Cnotin%20%5Cmathbb%7BR%7D,矛盾.

所以%5Cmathbb%7BR%7D%5Cmathbb%7BN%7D等势.

从而%5Cmathbb%7BQ%7D%5Cmathbb%7BR%7D不等势. 所以有理数集合与实数集合间无双射.

故B说法正确.

C. 构造g%3A%5Cmathbb%7BN%7D%20%5Crightarrow%20%5Cmathbb%7BZ%7D,满足

g%5Cleft(n%5Cright)%3D%5Cbegin%7Bcases%7D%0A%5Cfrac%7Bn%7D%7B2%7D%2Cn%3D2k%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright)%5C%5C%0A-%5Cfrac%7Bn%2B1%7D%7B2%7D%2Cn%3D2k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright)%0A%5Cend%7Bcases%7D

g是一个双射,所以%5Cmathbb%7BN%7D%5Cmathbb%7BZ%7D等势.

所以%5Cmathbb%7BR%7D%5Cmathbb%7BZ%7D不等势. 所以实数集合与整数集合间无双射.

故C说法正确.

D. 因为B、C说法是正确的,所以D说法不正确.

故选:BC.

13. 已知a%20%5Cin%20%5Cmathbb%7BR%7D%5Ctheta%20%5Cin%20%5Cleft%5B0%2C2%5Cpi%5Cright),复数

z_1%3D%5Ccos%5Ctheta%2B%5Cmathrm%7Bi%7D%5Csin%5Ctheta

z_2%3D%5Csin%5Ctheta%2B%5Cmathrm%7Bi%7D%5Ccos%5Ctheta

z_3%3Da%5Cleft(1-%5Cmathrm%7Bi%7D%5Cright)

求满足z_1z_2z_3成等比数列的%5Cleft(a%2C%5Ctheta%5Cright)的个数.

答案  6

解析  

由于z_2%5Cneq0,所以z_1%2Cz_2%2Cz_3成等比数列等价于

z_2%5E2%3Dz_1z_3

由于

z_2%3D%5Ccos%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Ctheta%5Cright)%2B%5Cmathrm%7Bi%7D%5Csin%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Ctheta%5Cright)

z_3%3D%5Csqrt%7B2%7Da%5Cleft(%5Ccos%5Cfrac%7B7%5Cpi%7D%7B4%7D%2B%5Cmathrm%7Bi%7D%5Csin%5Cfrac%7B7%5Cpi%7D%7B4%7D%5Cright)

所以z_2%5E2%3Dz_1z_3等价于

%5Cbegin%7Bcases%7D%0A1%5E2%3D1%5Ccdot%5Csqrt%7B2%7Da%5C%5C%0A%5Cpi-2%5Ctheta%3D%5Ctheta%2B%5Cfrac%7B7%5Cpi%7D%7B4%7D%2B2k%5Cpi%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A%E6%88%96%0A%5Cbegin%7Bcases%7D%0A-1%5E2%3D1%5Ccdot%5Csqrt%7B2%7Da%5C%5C%0A2%5Cpi-2%5Ctheta%3D%5Ctheta%2B%5Cfrac%7B7%5Cpi%7D%7B4%7D%2B2k%5Cpi%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A

%5Cbegin%7Bcases%7D%0Aa%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D-%5Cfrac%7B%5Cpi%7D%7B4%7D%2B%5Cfrac%7B2k%5Cpi%7D%7B3%7D%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A%E6%88%96%0A%5Cbegin%7Bcases%7D%0Aa%3D-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D%5Cfrac%7B%5Cpi%7D%7B12%7D%2B%5Cfrac%7B2k%5Cpi%7D%7B3%7D%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A

由于%5Ctheta%20%5Cin%20%5Cleft%5B0%2C2%5Cpi%5Cright),上式即

%5Cbegin%7Bcases%7D%0Aa%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D%5Cfrac%7B5%5Cpi%7D%7B12%7D%E6%88%96%5Cfrac%7B13%5Cpi%7D%7B12%7D%E6%88%96%5Cfrac%7B21%5Cpi%7D%7B12%7D%0A%5Cend%7Bcases%7D%0A%E6%88%96%0A%5Cbegin%7Bcases%7D%0Aa%3D-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D%5Cfrac%7B%5Cpi%7D%7B12%7D%E6%88%96%5Cfrac%7B3%5Cpi%7D%7B4%7D%E6%88%96%5Cfrac%7B17%5Cpi%7D%7B12%7D%0A%5Cend%7Bcases%7D%0A

所以满足z_1%2Cz_2%2Cz_3成等比数列的%5Cleft(a%2C%5Ctheta%5Cright)的个数为6.

2023浙江大学强基数学逐题解析(5)的评论 (共 条)

分享到微博请遵守国家法律