欢迎光临散文网 会员登陆 & 注册

【DELM分类】基于花朵授粉算法改进深度学习极限学习机实现数据分类附matlab代码

2022-04-23 09:50 作者:Matlab工程师  | 我要投稿

1 简介

人工神经网络的最大缺点是训练时间太长从而限制其实时应用范围,近年来,极限学习机(Extreme Learning Machine, ELM)的提出使得前馈神经网络的训练时间大大缩短,然而当原始数据混杂入大量噪声变量时,或者当输入数据维度非常高时,极限学习机算法的综合性能会受到很大的影响.深度学习算法的核心是特征映射,它能够摒除原始数据中的噪声,并且当向低维度空间进行映射时,能够很好的起到对数据降维的作用,因此我们思考利用深度学习的优势特性来弥补极限学习机的弱势特性从而改善极限学习机的性能.为了进一步提升DELM预测精度,本文采用麻雀搜索算法进一步优化DELM超参数,仿真结果表明,改进算法的预测精度更高。

2 部分代码

% --------------------------------------------------------------------%% Flower pollenation algorithm (FPA), or flower algorithm             %% Programmed by Xin-She Yang @ May 2012                               %% --------------------------------------------------------------------%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Notes: This demo program contains the very basic components of      %% the flower pollination algorithm (FPA), or flower algorithm (FA),   %% for single objective optimization.    It usually works well for     %% unconstrained functions only. For functions/problems with           %% limits/bounds and constraints, constraint-handling techniques       %% should be implemented to deal with constrained problems properly.   %%                                                                     %% Citation details:                                                   %%1)Xin-She Yang, Flower pollination algorithm for global optimization,%% Unconventional Computation and Natural Computation,                 %% Lecture Notes in Computer Science, Vol. 7445, pp. 240-249 (2012).   %%2)X. S. Yang, M. Karamanoglu, X. S. He, Multi-objective flower       %% algorithm for optimization, Procedia in Computer Science,           %% vol. 18, pp. 861-868 (2013).                                        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clcclear allclose alln=30;           % Population size, typically 10 to 25p=0.8;           % probabibility switch% Iteration parametersN_iter=3000;            % Total number of iterationsfitnessMSE = ones(1,N_iter);% % Dimension of the search variables Example 1d=2;Lb = -1*ones(1,d);Ub = 1*ones(1,d);% % Dimension of the search variables Example 2% d=3;% Lb = [-2 -1 -1];% Ub = [2 1 1];%% % Dimension of the search variables Example 3% d=3;% Lb = [-1 -1 -1];% Ub = [1 1 1];%%% % % Dimension of the search variables Example 4% d=9;% Lb = -1.5*ones(1,d);% Ub = 1.5*ones(1,d);% Initialize the population/solutionsfor i=1:n,    Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);    % To simulate the filters use fitnessX() functions in the next line    Fitness(i)=fitness(Sol(i,:));end% Find the current best[fmin,I]=min(Fitness);best=Sol(I,:);S=Sol;% Start the iterations -- Flower Algorithmfor t=1:N_iter,    % Loop over all bats/solutions    for i=1:n,        % Pollens are carried by insects and thus can move in        % large scale, large distance.        % This L should replace by Levy flights        % Formula: x_i^{t+1}=x_i^t+ L (x_i^t-gbest)        if rand>p,            %% L=rand;            L=Levy(d);            dS=L.*(Sol(i,:)-best);            S(i,:)=Sol(i,:)+dS;            % Check if the simple limits/bounds are OK            S(i,:)=simplebounds(S(i,:),Lb,Ub);            % If not, then local pollenation of neighbor flowers        else            epsilon=rand;            % Find random flowers in the neighbourhood            JK=randperm(n);            % As they are random, the first two entries also random            % If the flower are the same or similar species, then            % they can be pollenated, otherwise, no action.            % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)            S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));            % Check if the simple limits/bounds are OK            S(i,:)=simplebounds(S(i,:),Lb,Ub);        end        % Evaluate new solutions        % To simulate the filters use fitnessX() functions in the next        % line        Fnew=fitness(S(i,:));        % If fitness improves (better solutions found), update then        if (Fnew<=Fitness(i)),            Sol(i,:)=S(i,:);            Fitness(i)=Fnew;        end        % Update the current global best        if Fnew<=fmin,            best=S(i,:)   ;            fmin=Fnew   ;        end    end    % Display results every 100 iterations    if round(t/100)==t/100,        best        fmin    end    fitnessMSE(t) = fmin; end%figure, plot(1:N_iter,fitnessMSE);% Output/displaydisp(['Total number of evaluations: ',num2str(N_iter*n)]);disp(['Best solution=',num2str(best),'   fmin=',num2str(fmin)]);figure(1)plot( fitnessMSE)xlabel('Iteration');ylabel('Best score obtained so far');

3 仿真结果

4 参考文献

[1]马萌萌. 基于深度学习的极限学习机算法研究[D]. 中国海洋大学, 2015.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。



【DELM分类】基于花朵授粉算法改进深度学习极限学习机实现数据分类附matlab代码的评论 (共 条)

分享到微博请遵守国家法律