技术干货周刊奉上(开关电源,LLC变换器,数字电源)
开关电源环路学习笔记8:如何快速看出零点和极点
作者:硬件工程师炼成之路
不知不觉,环路内容已经写了7节了,以理论分析为主,下面来说说兄弟们都很关心的内容——零点和极点。前面几节内容,我们已经将传递函数的来源,推导过程说明白了。有了传递函数,我们就能够画出波特图,就能够分析系统到底稳不稳定。
但是问题来了,假如我们得到的波特图表明这个系统是不稳定的,那么该如何调整呢?该修改什么器件呢?或者说一个原本稳定的系统,但是我们想修改其中某个元件,会不会造成系统不稳定?总不至于每次修改一个器件,然后画出传递函数看看长什么样子,不行就接着改?这种鸟枪法总归不好。

鸟枪法不行,自然有更好的法子,那就是找到一些特殊点进行分析。这些特殊点,就是零点和极点,零点和极点可以帮助我们调整电路。
关于零点和极点,结合我自己的经验,我觉得以下几个问题是值得思考一下的。
1、传递函数中,让分母为0的频率点叫极点,既然分母为0,那算出来的值不是无穷大吗?增益无穷大?这也能出现?
2、老是看到说增加一个电容,就增加了一个极点,增加一个电阻,就增加了一个零点,这到底是怎么回事?其中的道理又是为什么?
3、拿到具体的电路,那个零极点如何能直接看出来呢?
这一节就来看看上面这几个问题吧。
零点和极点的定义
先来复习一下概念,什么是零点和极点,一般教材上面给出的定义大致是这样的:

极点
上面这个很好理解,清晰明了,但是一个大坑也就随之而来了。如果从数学公式的角度看,这定义没啥好说的,该咋样咋样。
但是一放到电路里面去,就尴尬了,H(s)的物理意义不是输出除以输入吗?
那极点的意思不就是使输出为无穷大的点,既然输出无穷大了,那么系统肯定是不稳定的,那么我们常说的极点又到底是什么?
比如下面是从网上找的别人写的零点和极点的物理意义,难道自己写的时候不懵吗?

那怎么理解我上面这个问题呢?
结合实际的情况,系统的传递函数算出来的根多是负数,而现实世界中是没有负频率的,貌似都是直接把负号去掉之后称为极点。
比如下面的低通滤波器的传递函数的极点:

假如R=1Khz,C=1uF,那么极点是s=-1000,但是我们通常说极点是1000,理由貌似是自然界中没有负频率,所以对s求了个模,频率w=|s|=1000,我们把这个求模后的值也还是叫极点,并没有重新取名字。
这个取了模之后的极点再代入原式子H(s)中,就不能够使H(s)等于无穷大了,当然了,也不能是无穷大,因为无穷大意味着系统不稳定。我们研究的电路系统一般是稳定的,所以基本上极点都是负的,或者说在复平面的左半平面……
原文链接:https://www.dianyuan.com/eestar/article-6011.html
又一种电流模式LLC变换器的控制方法
作者:杨帅锅
谐振变换器(LLC)目前阶段还是以反馈量去直接控制开关频率来实现对输出功率的控制方法,该方法目前存在:1、环路响应速度慢,2、控制到输出的传递函数中存在双极点,使得不容易稳定,3、过流保护和过功率保护不准。下图是典型的半桥LLC变换器的拓扑图:

下图是典型的直接控制频率方法的从控制到输出的传递函数Bode图,可见在不同的输出功率下传递函数中的双极点位置不固定,使得需要在三种不同的区域中考虑闭环稳定性设计,提升了设计的复杂程度。

参考文献:
1、 在题为“Charge current control for LLC resonant converter”作者:Hangseok Choi, Fairchild Semiconductor 3030, San Jose, CA, USA,提出了适用采样谐振电流积分的方式来实现电流模式LLC的控制,他的思路是采样谐振电流的积分,将正弦电流改为电荷积分器变为代表电流大小的三角波大小,通过反馈控制三角波的峰值,即可控制谐振电流的大小,从而实现功率控制。可见下图:

LLC工作波形:

2、 在题为“Time-shift Control of LLC Resonant Converters”作者:Claudio Adragna, STMicroelectronics, Italy, claudio.adragna@st.com,提出了通过检测谐振电流过零点的方式来实现电流模式LLC的控制方法,实现了对LLC变换器的降阶控制,提升了系统的动态性能。

3、在题为“Bang-Bang Charge Control for LLC Resonant Converters”作者:Zhiyuan Hu, Laili Wang, Yan-Fei Liu, and P. C. Sen Department of Electrical and Computer Engineering Queen’s University Kingston, Canada,提出了监测谐振电流上的正负电压来实现对传输功率的控制方法……
原文链接:https://www.dianyuan.com/eestar/article-6057.html
STM32G4系列MCU——数字电源入门
作者:wkhn
下面开始环路控制的代码编写。
在本例中,其实是用到了两个环路补偿的计算函数,电压环路和电流环路。都是用的3P3Z的补偿算法。不同的是电压环路在FMAC硬件中进行计算,不占用CPU的时间,而电流环路只能用CPU进行软件计算,比较耗费CPU时间。下图是FMAC工作在IIR滤波器模式下的结构图:

从上图中,可以看到环路的差分方程的计算过程。
在程序的初始化时,要初始化这两个环路参数……
原文链接:https://www.dianyuan.com/eestar/article-6066.html
磁珠应用不当引起的辐射超标
一、前言
产品内部互联连接器,磁珠/电容或者互联线缆连接不当不仅仅会引起EMI问题,也会引起EMS问题。这是由于互联的连接器处在高频信号下,会形成相对较高的阻抗,当有一定的电流流过时,会在阻抗两端形成高压,高压即会引起电压驱动,形成共模辐射,也会降低系统的抗干扰能力,特别是对于噪声容限比较小的系统。

以上图为例,正常系统中只有一个大地,当设备1需要通过大地形成回流时,那么之间的连接处将成为必经之路,如果该通路阻抗较高,将会在此处形成一定数值的电压,进而产生EMI和EMS问题。
产品内部互联设计应该考虑以下几点:
(1)当有共模瞬态干扰电流流过互联设备时,建议选用金属外壳的连接器,电缆选用屏蔽电缆,并且连接器的金属外壳跟线缆屏蔽层进行360°搭接,同时互联的信号中“0”V工作地跟金属外壳,线缆屏蔽层直接相连。这样做的目的是引导共模电流从互联连接器的金属外壳和线缆的屏蔽层流过,避免流过互联连接器或者互联线缆中的高阻抗电缆而引起压降;
(2)如果只采用非金属外壳连接器和非屏蔽电缆,那么建议采用一块额外的金属板连接在互联设备的两端,通常可以借助产品现有的金属壳体,同时将“0”V工作地跟金属板直接连接。
(3)在(1),(2)方式都不可行的情况下,必须将所有互联信号滤波处理,目的是避免干扰信号通过互联连接器和电缆中的高阻抗形成压降。
(4)当内部电路有割地处理时,由于最终的必将有回流流到GND,该处的阻抗处理需要是小阻抗,如果有高阻抗电路设计,将会形成压降;
二、实际案例分析
1.现象描述
某产品在进行辐射实验时,发现162MHz频点超标,经过前期研究发现是本身产品13.56MHz的12倍频。


2.原因分析
当去掉其中一根未屏蔽线束电缆或者在该线缆上增加磁环时,发现该干扰信号幅值可以下降到限值以下。可以初步判断该辐射跟该线束有关,但是通过分析发现,该信号是模拟信号,且跟13.56MHz无关,而且测试其相关频谱均是13.56MHz的倍频。
我们已经知道了干扰源是13.56MHz,但是需要知道干扰路径在哪儿。通过频谱分析仪发现绿色圈出处162MHz幅值很高。



BAT_IN-为包含13.56MHz部分电路的数字GND,GND为其他模拟信号电路的GND,当有干扰电流(162MHz)流过该磁珠时,由于磁珠在该162MHz时阻抗将近800Ω,将会形成高压……
原文链接:https://www.dianyuan.com/eestar/article-6091.html
更多精彩内容,尽在电子星球 APP(https://www.eestar.com/)