欢迎光临散文网 会员登陆 & 注册

量子场论(十二):洛伦兹群的矢量表示

2022-12-30 22:41 作者:我的世界-华汁  | 我要投稿

洛伦兹变换的无穷小参数%7B%5Comega%5E%5Calpha%7D_%5Cbeta可以转化为:

%5Cbegin%7Balign%7D%7B%5Comega%5E%5Calpha%7D_%5Cbeta%26%3Dg%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cbeta%7D%3D%5Cfrac12(g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cbeta%7D-g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cbeta%5Cmu%7D)%3D%5Cfrac12(g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cnu%5Cmu%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta)%5C%5C%26%3D%5Cfrac12(g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Calpha%5Cnu%7D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%3D-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7Di(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%3D-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta.%5Cend%7Balign%7D%5Ctag%7B12.1%7D

其中%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta定义为:

%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta%5Cequiv%20i(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta).%5Ctag%7B12.2%7D

容易看出,它是反对称的:

%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%3D-%5Cmathcal%20J%5E%7B%5Cnu%5Cmu%7D.%5Ctag%7B12.3%7D

它的另一种写法是:

(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)_%7B%5Calpha%5Cbeta%7D%3Dg_%7B%5Calpha%5Cgamma%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Cgamma%7D_%5Cbeta%3Dig_%7B%5Calpha%5Cgamma%7D(g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%3Di(%7B%5Cdelta%5E%5Cmu%7D_%5Calpha%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-%7B%5Cdelta%5E%5Cnu%7D_%5Calpha%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta).%5Ctag%7B12.4%7D

这样的话,无穷小洛伦兹变换就是:

%7B(%5CLambda_%5Comega)%5E%5Calpha%7D_%5Cbeta%3D%7B%5Cdelta%5E%5Calpha%7D_%5Cbeta%2B%7B%5Comega%5E%5Calpha%7D_%5Cbeta%3D%7B%5Cdelta%5E%5Calpha%7D_%5Cbeta-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta.%5Ctag%7B12.5%7D

%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D的对易关系为:

%5Cbegin%7Balign%7D%7B%5B%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D%5D%5E%5Calpha%7D_%5Cbeta%26%3D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cgamma%7B(%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D)%5E%5Cgamma%7D_%5Cbeta-%7B(%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D)%5E%5Calpha%7D_%5Cgamma%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Cgamma%7D_%5Cbeta%5C%5C%26%3Di%5E2%5B(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cgamma-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cgamma)(g%5E%7B%5Crho%5Cgamma%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Csigma%5Cgamma%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta)-(g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cgamma-g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cgamma)(g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%5D%5C%5C%26%3D-g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cgamma%20g%5E%7B%5Crho%5Cgamma%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta%2Bg%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cgamma%20g%5E%7B%5Csigma%5Cgamma%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cgamma%20g%5E%7B%5Crho%5Cgamma%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cgamma%20g%5E%7B%5Csigma%5Cgamma%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cgamma%20g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cgamma%20g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta-g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cgamma%20g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta%2Bg%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cgamma%20g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta%5C%5C%26%3D-g%5E%7B%5Cmu%5Calpha%7Dg%5E%7B%5Crho%5Cnu%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta%2Bg%5E%7B%5Cmu%5Calpha%7Dg%5E%7B%5Csigma%5Cnu%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Cnu%5Calpha%7Dg%5E%7B%5Crho%5Cmu%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7Dg%5E%7B%5Csigma%5Cmu%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Crho%5Calpha%7Dg%5E%7B%5Cmu%5Csigma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Crho%5Calpha%7Dg%5E%7B%5Cnu%5Csigma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta-g%5E%7B%5Csigma%5Calpha%7Dg%5E%7B%5Cmu%5Crho%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta%2Bg%5E%7B%5Csigma%5Calpha%7Dg%5E%7B%5Cnu%5Crho%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta%5C%5C%26%3Dg%5E%7B%5Cnu%5Crho%7D(g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta-g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta)%2Bg%5E%7B%5Cmu%5Crho%7D(g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta)%2Bg%5E%7B%5Cnu%5Csigma%7D(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta-g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%2Bg%5E%7B%5Cmu%5Csigma%7D(g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta)%5C%5C%26%3D-ig%5E%7B%5Cnu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Csigma%5Cmu%7D)%5E%5Calpha%7D_%5Cbeta-ig%5E%7B%5Cmu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Cnu%5Csigma%7D)%5E%5Calpha%7D_%5Cbeta-ig%5E%7B%5Cnu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D)%5E%5Calpha%7D_%5Cbeta-ig%5E%7B%5Cmu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Crho%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta%5C%5C%26%3Di%5Bg%5E%7B%5Cnu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Csigma%7D)%5E%5Calpha%7D_%5Cbeta-g%5E%7B%5Cmu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Cnu%5Csigma%7D)%5E%5Calpha%7D_%5Cbeta-g%5E%7B%5Cnu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D)%5E%5Calpha%7D_%5Cbeta%2Bg%5E%7B%5Cmu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Cnu%5Crho%7D)%5E%5Calpha%7D_%5Cbeta%5D.%5Cend%7Balign%7D%5Ctag%7B12.6%7D

即:

%5B%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D%5D%3Di(g%5E%7B%5Cnu%5Crho%7D%5Cmathcal%20J%5E%7B%5Cmu%5Csigma%7D-g%5E%7B%5Cmu%5Crho%7D%5Cmathcal%20J%5E%7B%5Cnu%5Csigma%7D-g%5E%7B%5Cnu%5Csigma%7D%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D%2Bg%5E%7B%5Cnu%5Crho%7D%5Cmathcal%20J%5E%7B%5Cmu%5Csigma%7D-g%5E%7B%5Cnu%5Csigma%7D%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D).%5Ctag%7B12.7%7D

可见,%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D满足洛伦兹代数关系,%7B%5CLambda%5E%5Calpha%7D_%5Cbeta是洛伦兹群的四维矢量表示。因而%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D就是矢量表示的生成元矩阵,作用的对象是洛伦兹矢量。

无穷小洛伦兹变换的矩阵记法为:

%5CLambda_%5Comega%3D%5Cmathbf1%2B%5Comega%3D%5Cmathbf1-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D.%5Ctag%7B12.8%7D

它可以看作矩阵级数:

%5CLambda%3De%5E%7B-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%7D%3De%5E%5Comega%3D%5Csum%5E%5Cinfty_%7Bn%3D0%7D%5Cfrac%7B%5Comega%5En%7D%7Bn!%7D%5Ctag%7B12.9%7D

展开到一阶项的结果。矩阵%5Comega与度规矩阵%5Cmathbf%20g满足:

%7B(%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g)%5E%5Calpha%7D_%5Cbeta%3Dg%5E%7B%5Calpha%5Cgamma%7D%7B(%7B%5Comega%5E%7B%5Cmathrm%20T%7D%7D)_%5Cgamma%7D%5E%5Cdelta%20g_%7B%5Cdelta%5Cbeta%7D%3Dg%5E%7B%5Calpha%5Cgamma%7D%7B%7B%5Comega%7D%5E%5Cdelta%7D_%5Cgamma%20g_%7B%5Cdelta%5Cbeta%7D%3Dg%5E%7B%5Calpha%5Cgamma%7D%5Comega_%7B%5Cbeta%5Cgamma%7D%3D-g%5E%7B%5Calpha%5Cgamma%7D%5Comega_%7B%5Cgamma%5Cbeta%7D%3D-%7B%5Comega%5E%5Calpha%7D_%5Cbeta.%5Ctag%7B12.10%7D

即:

%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%3D-%5Comega.%5Ctag%7B12.11%7D

从而:

%5Cmathbf%20g%5E%7B-1%7D%5CLambda%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%3D%5Cmathbf%20g%5E%7B-1%7D%5B%5Csum%5E%5Cinfty_%7Bn%3D0%7D%5Cfrac%7B(%5Comega%5E%7B%5Cmathrm%20T%7D)%5En%7D%7Bn!%7D%5D%5Cmathbf%20g%3D%5Csum%5E%5Cinfty_%7Bn%3D0%7D%5Cfrac%7B(%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g)%5En%7D%7Bn!%7D%3De%5E%7B%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%7D%3De%5E%7B-%5Comega%7D.%5Ctag%7B12.12%7D

若两个同阶方阵互相对易,即%5BA%2CB%5D%3D0,那么二项式定理是成立的:

(A%2BB)%5En%3D%5Csum_%7Bj%3D0%7D%5En%20C%5Ej_n%20A%5EjB%5E%7Bn-j%7D.%5Ctag%7B12.13%7D

把阶乘推广到负整数,对于整数m%3C0,定义:

m!%5Crightarrow%5Cinfty%5C%20%2C%5C%20%5Cfrac1%7Bm!%7D%5Crightarrow0.%5Ctag%7B12.14%7D

从而,对于j%3En,有%5Cfrac1%7B(n-j)!%7D%5Crightarrow0。这样一来,可以把(12.13)右边的级数化为无穷级数:

(A%2BB)%5En%3D%5Csum_%7Bj%3D0%7D%5E%5Cinfty%20C%5Ej_nA%5EjB%5E%7Bn-j%7D.%5Ctag%7B12.15%7D

由此推出:

e%5E%7BA%2BB%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac1%7Bn!%7D(A%2BB)%5En%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac1%7Bn!%7D%5Csum_%7Bj%3D0%7D%5E%5Cinfty%5Cfrac%7Bn!%7D%7Bj!(n-j)!%7DA%5EjB%5E%7Bn-j%7D%3D%5Csum_%7Bj%3D0%7D%5E%5Cinfty%5Cfrac%7BA%5Ej%7D%7Bj!%7D%5Cbigg%5B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7BB%5E%7Bn-j%7D%7D%7B(n-j)!%7D%5Cbigg%5D%3De%5EAe%5EB.%5Ctag%7B12.16%7D

上式对对易的算符也成立。

由于%5B-%5Comega%2C%5Comega%5D%3D0,根据(12.12)与(12.16),有:

%5Cmathbf%20g%5E%7B-1%7D%5CLambda%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%5CLambda%3De%5E%7B-%5Comega%7De%5E%5Comega%3De%5E%7B%5Cmathbf0%7D%3D%5Cmathbf1.%5Ctag%7B12.17%7D

%5CLambda%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%5CLambda%3D%5Cmathbf%20g,即由(12.9)定义的%5CLambda满足保度规条件,确实是洛伦兹变换。此时,变换参数%5Comega_%7B%5Cmu%5Cnu%7D可以不是无穷小,而是一个有限值,所以,

%5CLambda%3De%5E%7B-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%7D%5Ctag%7B12.18%7D

是用洛伦兹群矢量表示生成元%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D表达出来的有限变换。由于变换参数%5Comega_%7B%5Cmu%5Cnu%7D可以连续地变化到%5Comega_%7B%5Cmu%5Cnu%7D%3D0,用(12.18)式表达的洛伦兹变换在群空间中与恒等变换相连通,因而它属于固有保时向洛伦兹群。当%5Comega_%7B%5Cmu%5Cnu%7D遍历群空间中所有参数取值时,洛伦兹变换(12.18)遍历所有的固有保时向洛伦兹群元素。

量子场论(十二):洛伦兹群的矢量表示的评论 (共 条)

分享到微博请遵守国家法律