欢迎光临散文网 会员登陆 & 注册

(圆锥曲线)利用两点式的变换来解决常见问题

2022-08-24 22:59 作者:因恋相思久  | 我要投稿


先来一道开胃菜

抛物线C%EF%BC%9Ay%5E2%3D2px%20%EF%BC%88p%EF%BC%9E0%EF%BC%89上一定点P%EF%BC%88x_%7B0%7D%EF%BC%8Cy_%7B0%7D%20%EF%BC%89%EF%BC%88y_%7B0%7D%20%EF%BC%9E0%EF%BC%89作两条直线分别交抛物线于A%EF%BC%88x_%7B1%7D%20%EF%BC%8Cy_%7B1%7D%20%EF%BC%89%EF%BC%8CB%EF%BC%88x_%7B2%7D%20%EF%BC%8Cy_%7B2%7D%20%EF%BC%89.

问:当PA,PB的斜率存在且倾斜角互补时,求%5Cfrac%7By_%7B1%7D%20%2By_%7B2%7D%20%7D%7By_%7B0%7D%20%7D%20的值,并证明直线AB的斜率是非零常数

解:.

因为直线PA:%EF%BC%88y_%7B1%7D%20%2By_%7B0%7D%20%EF%BC%89y%3D2px%2By_%7B1%7D%20y_%7B0%7D%20

直线PB:%EF%BC%88y_%7B2%7D%20%2By_%7B0%7D%20%EF%BC%89y%3D2px%2By_%7B2%7D%20y_%7B0%7D%20

直线AB:%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89y%3D2px%2By_%7B1%7D%20y_%7B2%7D%20

当PA,PB的斜率存在且倾斜角互补时,即k_%7BAP%7D%2B%20k_%7BBP%7D%20%3D0

所以%5Cfrac%7B2p%7D%7By_%7B1%7D%20%2By_%7B0%7D%20%7D%20%2B%5Cfrac%7B2p%7D%7By_%7B2%7D%20%2By_%7B0%7D%20%7D%20%3D0

化简有y_%7B1%7D%20%2By_%7B2%7D%20%3D-2y_%7B0%7D%20

所以%5Cfrac%7By_%7B1%7D%20%2By_%7B2%7D%20%7D%7By_%7B0%7D%20%7D%20%3D-2

k_%7BAB%7D%20%3D%5Cfrac%7B2p%7D%7B%7By_%7B1%7D%20%2By_%7B2%7D%20%7D%7D%20%3D-%5Cfrac%7Bp%7D%7By_%7B0%7D%20%7D%20

升级版:

已知抛物线%5CGamma%20%20%EF%BC%9Ay%5E2%3D2px%20%EF%BC%88p%EF%BC%9E0%EF%BC%89上三点直线A%EF%BC%882%2C2%EF%BC%89%EF%BC%8CB%EF%BC%8CC,直线AC,AB是圆%EF%BC%88x-2%EF%BC%89%5E2%2By%5E2%3D1的两条切线,求直线BC的方程

解:

A代进%5CGamma%20p%3D1

B%EF%BC%88x_%7B1%7D%20%EF%BC%8Cy_%7B1%7D%20%EF%BC%89%EF%BC%8CC%EF%BC%88x_%7B2%7D%20%EF%BC%8Cy_%7B2%7D%20%EF%BC%89

直线AB:%EF%BC%88y_%7B1%7D%20%2B2%20%EF%BC%89y%3D2x%2B2y_%7B1%7D%20

直线AC:%EF%BC%88y_%7B2%7D%20%2B2%20%EF%BC%89y%3D2x%2B2y_%7B2%7D%20

直线BC:%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89y%3D2x%2By_%7B1%7D%20y_%7B2%7D%20

直线AB与圆相切,由点到直线距离公式有

%5Cfrac%7B%5Cvert%204%2B2y_%7B1%7D%20%20%5Cvert%20%7D%7B%5Csqrt%7B2%5E2%2B%20%EF%BC%88y_%7B1%7D%20%2B2%EF%BC%89%5E2%20%7D%20%7D%20%3D1

化简有3y_%7B1%7D%20%5E2%2B12y_%7B1%7D%20%2B8%3D0

同理3y_%7B2%7D%20%5E2%2B12y_%7B2%7D%20%2B8%3D0

所以

y_%7B1%7D%20y_%7B2%7D%20%3D%5Cfrac%7B8%7D%7B3%7D%20%EF%BC%8Cy_%7B1%7D%2B%20y_%7B2%7D%3D-4%EF%BC%88%E5%90%8C%E6%9E%84%2B%E9%9F%A6%E8%BE%BE%EF%BC%89

所以直线BC为-4y%3D2x%2B%5Cfrac%7B8%7D%7B3%7D%20

3x%2B6y%2B4%3D0

再来个加强版(2021全国甲卷)

(1)设抛物线Cy%5E2%3D2px%EF%BC%88p%EF%BC%9E0%EF%BC%89,不妨令P%EF%BC%881%EF%BC%8C%5Csqrt%7B2p%7D%20%EF%BC%89

由几何关系(射影定理)

1%3D%EF%BC%88%5Csqrt%7B2p%7D%20%EF%BC%89%5E2

解得p%3D%5Cfrac%7B1%7D%7B2%7D%20

抛物线C%E4%B8%BA%EF%BC%9Ay%5E2%3Dx

显然%5Codot%20M%E7%9A%84%E6%96%B9%E7%A8%8B%E4%B8%BA%EF%BC%88x-2%EF%BC%89%5E2%2By%5E2%3D1%20

(2)

A_%7B1%7D%20%EF%BC%88x_%7B1%7D%20%EF%BC%8Cy_%7B1%7D%20%EF%BC%89%EF%BC%8CA_%7B2%7D%20%EF%BC%88x_%7B2%7D%20%EF%BC%8Cy_%7B2%7D%20%EF%BC%89%2CA_%7B3%7D%20%EF%BC%88x_%7B3%7D%EF%BC%8C%20y_%7B3%7D%20%EF%BC%89

直线A_%7B1%7D%20A_%7B2%7D%20%EF%BC%9A%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89y%3Dx%2By_%7B1%7D%20y_%7B2%7D%20

直线A_%7B1%7D%20A_%7B3%7D%20%EF%BC%9A%EF%BC%88y_%7B1%7D%20%2By_%7B3%7D%20%EF%BC%89y%3Dx%2By_%7B1%7D%20y_%7B3%7D%20

直线A_%7B2%7D%20A_%7B3%7D%20%EF%BC%9A%EF%BC%88y_%7B2%7D%20%2By_%7B3%7D%20%EF%BC%89y%3Dx%2By_%7B2%7D%20y_%7B3%7D%20

%E5%9B%A0%E4%B8%BA%E7%9B%B4%E7%BA%BFA_%7B1%7D%20A_%7B2%7D%20%E4%B8%8E%5Codot%20%20M%E7%9B%B8%E5%88%87

%5Cfrac%7B%5Cvert%202%2By_%7B1%7D%20y_%7B2%7D%20%20%5Cvert%20%7D%7B%5Csqrt%7B1%2B%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89%5E2%20%7D%20%7D%20%3D1

化简有

%EF%BC%88y_%7B1%7D%5E2%20-1%20%EF%BC%89y_%7B2%7D%5E2%2B2y_%7B1%7D%20y_%7B2%7D%20%2B3-y_%7B1%7D%20%5E2%3D0(注意化简要的是%20y_%7B2%7D%20

同理

%EF%BC%88y_%7B1%7D%5E2%20-1%20%EF%BC%89y_%7B3%7D%5E2%2B2y_%7B1%7D%20y_%7B3%7D%20%2B3-y_%7B1%7D%20%5E2%3D0

所以

y_%7B2%7D%20%2By_%7B3%7D%20%3D%5Cfrac%7B-2y_%7B1%7D%20%7D%7By_%7B1%7D%5E2-1%20%20%7D%20%EF%BC%8Cy_%7B2%7D%20y_%7B3%7D%3D%5Cfrac%7B3-y_%7B1%7D%5E2%20%7D%7By_%7B1%7D%5E2-1%20%20%7D

所以直线A_%7B2%7D%20A_%7B3%7D%20方程为%5Cfrac%7B-2y_%7B1%7D%20%7D%7By_%7B1%7D%5E2-1%20%20%7D%20y%3Dx%2B%5Cfrac%7B3-y_%7B1%7D%5E2%20%7D%7By_%7B1%7D%5E2-1%20%20%7D

%EF%BC%88y_%7B1%7D%5E2-1%20%EF%BC%89x%2B2y_%7B1%7Dy%2B3-y_%7B1%7D%5E2%3D0%20

设直线A_%7B2%7D%20A_%7B3%7D%20%5Codot%20M距离为d

所以

d%3D%5Cfrac%7B%5Cvert%20y_%7B1%7D%5E2%2B1%20%20%5Cvert%20%7D%7B%5Csqrt%7B%EF%BC%88y_%7B1%7D%5E2-1%20%EF%BC%89%5E2%2B4y_%7B1%7D%5E2%20%20%7D%20%7D%20%3D%5Cfrac%7B%5Cvert%20y_%7B1%7D%5E2%2B1%20%20%5Cvert%20%7D%7B%5Csqrt%7B%EF%BC%88y_%7B1%7D%5E2%2B1%20%EF%BC%89%5E2%20%7D%20%7D%3D1

所以直线A_%7B2%7D%20A_%7B3%7D%20%5Codot%20M%E7%9B%B8%E5%88%87

由此观之,如果用未知坐标代替已知坐标,计算量和技巧就更深一层,要更加注意细节了


注意:

这题的三个点都在抛物线上,要仔细观察直线的两点是否在抛物线上。

②该直线方程需要推导(并不复杂)

③同构时要找需要的关键直线坐标

若有错误,欢迎在评论指导

若觉得有用的话,就点点赞吧!

(圆锥曲线)利用两点式的变换来解决常见问题的评论 (共 条)

分享到微博请遵守国家法律