复旦大学谢启鸿老师高等代数在线习题课 思考题分析与解 ep.47
本文内容主要有关于矩阵的Kroncker积,在高代白皮书上对应第2.2.11节和第6.2.4节
题目来自于复旦大学谢启鸿教授在本站高等代数习题课的课后思考题,本文仅供学习交流
习题课视频链接:复旦大学谢启鸿高等代数习题课_哔哩哔哩_bilibili
本人解题水平有限,可能会有错误,恳请斧正!
祝大家新年快乐!
练习题1 设A,B为矩阵(阶数可不同),则是行满秩阵(列满秩阵)的充要条件是A,B均为行满秩阵(列满秩阵).
证明 设A,B分别为阶、
阶矩阵,再考虑A,B的相抵标准型,存在非异阵
,并且
注意到,从而
,但
是行满秩阵当且仅当
,从而当且仅当A,B均为行满秩阵.列满秩的情况完全一致.
练习题2 设A为数域F上的m阶矩阵,B为数域F上的n阶矩阵,V是F上矩阵全体构成的线性空间,V上的线性变换
定义为:
.设A的特征值为
,矩阵B的特征值为
.试求
的维数和一组基.
证明 容易验证线性变换定义为:
在全体基础矩阵
作为基时的表示矩阵为
,从而易知
. 考虑A,B的相抵标准型,存在非异阵
,于是
利用解方程组的标准型即可得到基础解系,从而构成Ker\varphi的一组基.
练习题3(17级高代I期末考试第六大题) 设A为数域F上的m阶矩阵,B为数域F上的n阶矩阵,V是F上矩阵全体构成的线性空间,V上的线性变换
定义为:
.设A的特征值为
,矩阵B的特征值为
.求证:
是幂零线性变换当且仅当A,B中至少有一个是幂零阵.
证明 注意到是幂零线性变换当且仅当
的全体特征值为O,从而当且仅当
恒成立,而这当且仅当
全为0或者
全为零,这当且仅当A是幂零阵或者B是幂零阵,因此
是幂零线性变换当且仅当A,B中至少有一个是幂零阵.
练习题4 设A为数域F上的m阶矩阵,B为数域F上的n阶矩阵,V是F上矩阵全体构成的线性空间,V上的线性变换
定义为:
.设A的特征值为
,矩阵B的特征值为
.证明:若A,B都是幂零阵,则
是幂零线性变换.
证明 容易验证线性变换在全体基础矩阵
作为基时的表示矩阵为
,并且特征值为
,若A,B都是幂零阵,则
的特征值全为0,从而
是幂零线性变换.
练习题5 设V为n阶复方阵全体构成的线性空间,V上的线性变换定义为
,其中
.证明:
是幂零线性变换的充要条件是存在
,使得
是幂零阵.
证明 容易验证线性变换在全体基础矩阵
作为基时的表示矩阵为
,并且特征值为
,若
是幂零线性变换,则
,即A的全部特征值相同,从而存在
,使得
是幂零阵.反过来,若存在
,使得
是幂零阵,则说明
的特征值全为0,从而A的特征值全为
,于是线性变换
的全体特征值为0,这说明线性变换
是幂零线性变换.
练习题6(19级高代II每周一题) 设V为n阶复方阵全体构成的线性空间,V上的线性变换定义为
,其中
.证明:
可对角化的充要条件是A可对角化.
证明 容易验证线性变换在全体基础矩阵
作为基时的表示矩阵为
.
先证充分性.设A可对角化,即存在非异阵P,使得为对角阵,则容易验证
从而相似于对角阵,从而
可对角化.
再证必要性,用反证法.设可对角化但A不可对角化,则A的Jordan标准型至少有一个二阶以上的Jordan块,不妨设为
,其对应的基向量为
,满足:
设,则可证明U是
不变子空间,并且利用每周一题问题[2021A08]的结论(复旦大学谢启鸿高等代数每周一题[2021A08]参考解答 - 哔哩哔哩 (bilibili.com))可知
线性无关,从而组成U的一组基.因为
可对角化,故
也可以对角化,并且经计算可知
在基
下的表示矩阵为
,这个上三角矩阵的主对角元全为0并且应当可对角化,但是因为主对角线上方存在非零元素,所以不可对角化,矛盾!
练习题7 设A,B分别为m,n阶复方阵,.求证:C是非异阵当且仅当g(A)是非异阵.
证明 先证充分性,设A的全体特征值为,B的全体特征值为
.若g(A)是非异阵,说明
,从而A,-B'没有公共特征值,注意到C的全体特征值为
,又A,-B'没有公共特征值,从而C的特征值全部不为0,于是C是非异阵.
再证必要性,若C是非异阵,则,从而A,-B'没有公共特征值,从而
,从而g(A)是非异阵.
注 最近参加专栏的活动要求字数,所以我将练习题解答直接写出,最后附上图片格式的解答



