欢迎光临散文网 会员登陆 & 注册

[Complex Analysis] Complex-Hyperbolic Relations

2021-08-20 14:10 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

Use Euler's formula e%5E%7Bi%5Ctheta%7D%20%3D%20%5Ccos(%5Ctheta)%20%2B%20i%5Csin(%5Ctheta)%20 to show the following identities:

%5Ccos(ix)%20%3D%20%5Ccosh(x)

%20%5Csin(ix)%20%3D%20i%5Csinh(x)

%5Ctan(ix)%20%3D%20i%5Ctanh(x)



【Solution】

Begin with Euler's formula e%5E%7Bi%5Ctheta%7D%20%3D%20%5Ccos(%5Ctheta)%20%2B%20i%5Csin(%5Ctheta)%20, we discover

e%5E%7Bi(ix)%7D%20%3D%20%5Ccos(ix)%20%2B%20i%5Csin(ix)

e%5E%7B-x%7D%20%3D%20%5Ccos(ix)%20%2B%20i%5Csin(ix)

and

e%5E%7Bi(-ix)%7D%20%3D%20%5Ccos(-ix)%20%2B%20i%5Csin(-ix)

e%5E%7Bx%7D%20%3D%20%5Ccos(ix)%20-%20i%5Csin(ix)%20

Adding e%5E%7Bx%7D and e%5E%7B-x%7D%20 yields

e%5E%7Bx%7D%20%2B%20e%5E%7B-x%7D%20%3D%202%5Ccos(ix)

Subtracting e%5E%7Bx%7D and e%5E%7B-x%7D%20 yields

e%5E%7Bx%7D%20-%20e%5E%7B-x%7D%20%3D%20-2i%5Csin(ix)


Consequently,

%5Ccos(ix)%20%3D%20%5Cfrac%7Be%5E%7Bx%7D%20%2B%20e%5E%7B-x%7D%7D%7B2%7D

%5Csin(ix)%20%3D%20%5Cfrac%7Be%5E%7Bx%7D%20-%20e%5E%7B-x%7D%7D%7B-2i%7D%20%3D%20%5Cfrac%7Bi(e%5E%7Bx%7D%20-%20e%5E%7B-x%7D)%7D%7B2%7D%20


Since %5Ccosh(x)%20%3D%20%5Cfrac%7Be%5E%7Bx%7D%20%2B%20e%5E%7B-x%7D%7D%7B2%7D%20 and %5Csinh(x)%20%3D%20%20%5Cfrac%7Be%5E%7Bx%7D%20-%20e%5E%7B-x%7D%7D%7B2%7D%20, it follows that

%5Ccos(ix)%20%3D%20%5Ccosh(x)

%5Csin(ix)%20%3D%20i%5Csinh(x)


Since %5Ctan(ix)%20%3D%20%5Cfrac%7B%5Csin(ix)%7D%7B%5Ccos(ix)%7D and %5Ctanh(x)%20%3D%20%5Cfrac%7B%5Csinh(x)%7D%7B%5Ccosh(x)%7D, it follows that


%5Ctan(ix)%20%3D%20%5Cfrac%7Bi%5Csinh(x)%7D%7B%5Ccosh(x)%7D

%5Ctan(ix)%20%3D%20i%5Ctanh(x)



[Complex Analysis] Complex-Hyperbolic Relations的评论 (共 条)

分享到微博请遵守国家法律