欢迎光临散文网 会员登陆 & 注册

量子场论(三):实标量场的正则量子化、平面波展开

2022-10-29 01:09 作者:我的世界-华汁  | 我要投稿

若场%5Cphi(x)是一个洛伦兹标量,那么它就是标量场。在固有保时向洛伦兹变换下,若时空坐标的变换为x%5E%5Cprime%3D%5CLambda%20x%2C则标量场%5Cphi(x)的变换形式是:

%5Cphi%5E%5Cprime(x%5E%5Cprime)%3D%5Cphi(x).%5Ctag%7B3.1%7D

实标量场满足自共轭条件:

%5Cphi%5E%5Cdagger(x)%3D%5Cphi(x).%5Ctag%7B3.2%7D

进行量子化之后,实标量场%5Cphi(x)是一个厄米算符。

不参与相互作用的自由实标量场的拉格朗日量密度为:

%5Cmathcal%20L%3D%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi%5Cpartial_%5Cmu%5Cphi-%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B3.3%7D

或:

%5Cmathcal%20L%3D%5Cfrac12%5Cdot%5Cphi%5E2-%5Cfrac12(%5Cnabla%5Cphi)%5E2-%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B3.4%7D

其中m%3E0是实标量场的质量。拉格朗日量密度的第一项称为动能项,第二项称为质量项。由于:

%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi%5Cpartial_%5Cmu%5Cphi%3D%5Cfrac12%5B(%5Cpartial_0%5Cphi)%5E2-(%5Cpartial_1%5Cphi)%5E2-(%5Cpartial_2%5Cphi)%5E2-(%5Cpartial_3%5Cphi)%5E2%5D.%5Ctag%7B3.5%7D

所以:

%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi)%7D%3D%5Cpartial_0%5Cphi%3D%5Cpartial%5E0%5Cphi%5C%20%2C%5C%20%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_i%5Cphi)%7D%3D-%5Cpartial_i%5Cphi%3D%5Cpartial%5Ei%5Cphi.%5Ctag%7B3.6%7D

总结起来就是:

%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_%5Cmu%5Cphi)%7D%3D%5Cpartial%5E%5Cmu%5Cphi%5C%20%2C%5C%20%5Cfrac%7B%5Cpartial%20%5Cmathcal%20L%7D%7B%5Cpartial%5Cphi%7D%3D-m%5E2%5Cphi.%5Ctag%7B3.7%7D

把这些结果代入到欧拉-拉格朗日方程中去,可得到标量场满足如下的克莱因-高登方程:

(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cphi%3D0.%5Ctag%7B3.8%7D

这个方程还有其他的形式,不过只是写法上的不同,没有本质区别:

(%5Cpartial%5E2%2Bm%5E2)%5Cphi%3D0.%5Ctag%7B3.9%7D

(%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20t%5E2%7D%2Bm%5E2-%5CDelta)%5Cphi%3D0.%5Ctag%7B3.10%7D

(%5Csquare%2Bm%5E2)%5Cphi%3D0.%5Ctag%7B3.11%7D

实标量场%5Cphi(x)对应的共轭动量密度为:

%5Cpi(x)%3D%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi)%7D%3D%5Cpartial_0%5Cphi(x)%3D%5Cdot%5Cphi(x).%5Ctag%7B3.12%7D

那么实标量场的哈密顿量密度表示为:

%5Cmathcal%20H%3D%5Cfrac12%5Cpi%5E2%2B%5Cfrac12(%5Cnabla%5Cphi)%5E2%2B%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B3.13%7D

现在,把实标量场与动量密度都看作算符,则等时对易关系为:

%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3Di%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%5C%20%2C%5C%20%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cphi(%5Cmathbf%20y%2Ct)%5D%3D0%5C%20%2C%5C%20%5B%5Cpi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3D0.%5Ctag%7B3.14%7D

这种做法叫正则量子化。

在量子力学中,单粒子波函数%5CPsi的平面波解为:

%5CPsi(%5Cmathbf%20x%2Ct)%3De%5E%7B-iEt%2Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D.%5Ctag%7B3.15%7D

由于:

i%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%5CPsi%3DEe%5E%7B-iEt%2Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%3DE%5CPsi%5C%20%2C%5C%20-i%5Cnabla%5CPsi%3D%5Cmathbf%20pe%5E%7B-iEt%2Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%3D%5Cmathbf%20p%5CPsi.%5Ctag%7B3.16%7D

可见,能量与动量算符分别为:

%5Chat%20E%3Di%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%5C%20%2C%5C%20%5Chat%7B%5Cmathbf%20p%7D%3D-i%5Cnabla.%5Ctag%7B3.17%7D

组合起来,四维动量算符是:

%5Chat%20p%5E%5Cmu%3Di%5Cpartial%5E%5Cmu.%5Ctag%7B3.18%7D

平面波解可表达为%5CPsi(x)%3De%5E%7B-ip%5Ccdot%20x%7D%2C则:

i%5Cpartial%5E%5Cmu%5CPsi%3Di%5Cpartial%5E%5Cmu%20e%5E%7B-ip%5Ccdot%20x%7D%3Dp%5E%5Cmu%20e%5E%7B-ip%5Ccdot%20x%7D%3Dp%5E%5Cmu%5CPsi.%5Ctag%7B3.19%7D

也就是说,这个平面波解描述四维动量为p%5E%5Cmu的粒子。

现在在量子场论中讨论。设实标量场具有平面波解:

%5Cvarphi(x)%3De%5E%7B-ik%5Ccdot%20x%7D.%5Ctag%7B3.20%7D

则有:

(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cvarphi%3D-(k%5E2-m%5E2)%5Cvarphi%3D-%5B(k%5E0)%5E2-%7C%5Cmathbf%20k%7C%5E2-m%5E2%5D%5Cvarphi%3D0.%5Ctag%7B3.21%7D

为了满足这个条件,要求:

k%5E0%3D%5Cpm%20E_%5Cmathbf%20k.%5Ctag%7B3.22%7D

其中:

E_%5Cmathbf%20k%5Cequiv%5Csqrt%7B%7C%5Cmathbf%20k%7C%5E2%2Bm%5E2%7D.%5Ctag%7B3.23%7D

从而,克莱因-高登方程有两种平面波解,分别是k%5E0%3DE_%5Cmathbf%20k的正能解:

%5Cvarphi%5E%7B(%2B)%7D_%5Cmathbf%20k%3De%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D.%5Ctag%7B3.24%7D

k%5E0%3D-E_%5Cmathbf%20k的负能解

%5Cvarphi%5E%7B(-)%7D_%5Cmathbf%20k%3De%5E%7Bi(E_%5Cmathbf%20kt%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D.%5Ctag%7B3.25%7D

从而,满足克莱因-高登方程的场算符%5Cphi(%5Cmathbf%20x%2Ct)的一般解为(这里做了傅里叶展开,把场算符展开成无穷多个%5Cmathbf%20k):

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%5Cvarphi_%5Cmathbf%20k%5E%7B(%2B)%7D(x)%2B%5Ctilde%20a_%5Cmathbf%20k%5Cvarphi_%5Cmathbf%20k%5E%7B(-)%7D(x)%5D%5Cmathrm%20d%5E3k%5C%5C%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%20e%5E%7B-i(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%20k%20e%5E%7Bi(E_%5Cmathbf%20k%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B3.26%7D

其中a_%5Cmathbf%20k%5Ctilde%20a_%5Cmathbf%20k都是只依赖于%5Cmathbf%20k的算符,%5Cfrac1%7B%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D是归一化因子。

取一下厄米共轭,得到:

%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bi(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7B-i(E_%5Cmathbf%20k%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k%5C%5C%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%7B-%5Cmathbf%20k%7D%5E%5Cdagger%20e%5E%7Bi(E_%5Cmathbf%20k%20t%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%7B-%5Cmathbf%20k%7D%5E%5Cdagger%20e%5E%7B-i(E_%5Cmathbf%20k-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B3.27%7D

因此,实标量场的自共轭条件,要求:

%5Ctilde%20a_%5Cmathbf%20k%3Da%5E%5Cdagger_%7B-%5Cmathbf%20k%7D.%5Ctag%7B3.28%7D

因而:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%20e%5E%7B-i(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2Ba%5E%5Cdagger_%7B-%5Cmathbf%20k%7D%20e%5E%7Bi(E_%5Cmathbf%20k%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k%5C%5C%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%20e%5E%7B-i(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2Ba%5E%5Cdagger_%7B%5Cmathbf%20k%7D%20e%5E%7Bi(E_%5Cmathbf%20k-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B3.29%7D

%5Cmathbf%20k为粒子的动量%5Cmathbf%20p%2C则有:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(a_%5Cmathbf%20p%20e%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B3.30%7D

其中p%5E0是正的,满足质壳条件:

p%5E2%3Dp_%5Cmu%20p%5E%5Cmu%3Dm%5E2.%5Ctag%7B3.31%7D

p%5E0%5Cequiv%20E_%5Cmathbf%20p%3D%5Csqrt%7B%7C%5Cmathbf%20p%7C%5E2%2Bm%5E2%7D.%5Ctag%7B3.32%7D

a_%5Cmathbf%20p是湮灭算符,对应于正能解,a_%5Cmathbf%20p%5E%5Cdagger是产生算符,对应于负能解。

共轭动量密度的平面波展开为:

%5Cpi(%5Cmathbf%20x%2Ct)%3D%5Cpartial_0%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac%7B-i%5Csqrt%7BE_%5Cmathbf%20p%7D%7D%7B%5Csqrt2(2%5Cpi)%5E3%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20pe%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B3.33%7D

量子场论(三):实标量场的正则量子化、平面波展开的评论 (共 条)

分享到微博请遵守国家法律