技术干货周刊奉上(PFC,LLC,MOS管)
500W级联式AC-DC模拟电源方案(PFC+LLC)
作者:电源技能成长记
LLC谐振变换器具有软开关、易于磁集成、高密度、低EMI和高效率等优势,已在工业界得到了广泛的应用。这里分享一个常用的PFC+LLC级联式电源方案,原理框图如图1所示。
市电(185~240V)输入,由EMI滤波器进行滤波,再经过整流桥整流为直流电,通过对输入电压和开关管电流采样,实现电流与电流同相位调制,提高输入侧功率因数。Boost PFC电路将输入的交流电经整流和升压变为400V直流电。半桥LLC谐振电路功率级包括:开关网络、谐振腔、变压器和全波整流四部分。
开关网络将直流电转换为占空比为0.5的方波电压,谐振腔滤除电流的高次谐波,谐振电流为正弦波。方波电压经高频变压器变换为低压方波信号,由全波整流电路整流为直流电源,最后,接至直流电子负载。电源采用电压单闭环控制,电压采样电路对输出电压采样,由PI调节器连接到控制器反馈引脚。电流采样电路对谐振腔电流采样,电流信号接至控制器过流保护引脚。PI输出信号由UCC25600电源控制器中的压控振荡器(Voltage-Controlled Oscillator, VCO)转换为频率信号用于开关管驱动,驱动采用变压器隔离,连接到开关管门极。LLC变换器是通过改变工作频率的方式,调节谐振腔阻抗,实现电压稳定输出。

前级Boost PFC硬件参考电路如图2所示。


LLC谐振变换器参考电路。



图2 级联式AC-DC硬件电路(PFC+LLC)
样机调试波形
前级PFC输入电压、电流波形如图3所示……
原文链接:https://www.dianyuan.com/eestar/article-5986.html
MOS管基础知识
作者:开关电源分析
MOS管是FET的一种,可以被制作成增强型和耗尽型,P沟道或N沟道类型,在我们开关电源设计时,一般使用的是增强型N沟道MOS和增强型P沟道这两类MOS管,对于这两类MOS管,我们更常见的应该是NMOS,这是因为我们在选型时都会考虑MOS的导通电阻、最大电压、最大电流等等因素,相对于P沟道的MOS管,N沟道的MOS管导通电阻较小,且较于容易制作,所以开关电源中一般都采用NMOS。
我们在电路图中一般都可以看到,MOS管的漏极和源极之间有一个寄生二极管,这个二极管我们称为体二极管,在驱动负载时,这个二极管起着很重要的作用,还有在原理图上看不到的是MOS管的三个管脚之间有寄生电容存在,而这个寄生电容对于我们电源设计人员选择驱动电路时会麻烦一些,但这个是由于制造工艺限制产生的,是无法避免的。
对于MOS管导通,N沟道和P沟道是不一样的,对于N沟道的MOS管,当Vgs大于一定数值就会导通,所以这类MOS管适合用于源极接地的低端驱动,只要栅极电压达到4V或者10V就可以了;而对于PMOS管,当Vgs小于一定的数值就会导通,适合用于源极接VCC的高端驱动,虽然PMOS可以很方便的用于高端驱动,但是由于导通电阻大,价格贵、替换种类少等原因,在高端驱动中,通常还是选择使用NMOS。
不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量, 这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率 MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流 过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损 失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时 的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。
下面,我们以一个例子来简单说一下NMOS的工作原理:

Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。
Q1 和Q2 组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3 和Q4 不会同时导通……
原文链接:https://www.dianyuan.com/eestar/article-5985.html
运放之偏置电流Ib与失调电流Ios
作者:硬件工程师炼成之路
今天来说一说运放的偏置电流和失调电流,我们还是带着问题看,先想想下面几个问题:
1、为什么不同运放的偏置电流差这么多?原因是什么?
2、运放输入端偏置电流方向是什么样的呢?是可以流进,也可以流出的吗?
3、实际应用中偏置电流是如何引起误差的呢?
4、实际应用中失调电流是如何引起误差的呢?
5、电路设计时应该如何考虑偏置电流和失调电流的影响呢?
要想回答上面这些问题,我们首先需要了解偏置电流和失调电流到底是怎么产生的。
偏置电流、失调电流是什么?
我们前面说过,理想运放的同相端和反相端的输入电流为0,所以才有“虚断”的说法,但是实际运放的输入管脚都会流入或流出少量的电流,并且经常同相端的电流和反相端的电流还不相等。
我们如果将流入同相端的电流用Ib+表示,流入反相端的电流用Ib-表示,那么放大器的输入偏置电流Ib就是Ib+和Ib-的平均值,即Ib=(Ib+ + Ib-)/2。

可以看到,偏置电流就是同相和反相端电流的平均值,而失调电流,衡量的是2相电流之间的差异。
我们还是以前几期的LM2904举例子,如下图:

图中标注IB就是LM2904的输入偏置电流,典型值为-20nA,Ios为输入失调电流,典型值为2nA。失调电流是偏置电流的十分之一,说明这个放大器同相端和反相端的电流还是比较接近的。
那么偏置电流是如何产生的呢?
偏置电流的来源
显然,偏置电流取决于流入或流出放大器同相端和反相端电流的大小,这自然和放大器输入级的构造晶体管类型有莫大的关系。
我们知道,晶体管有好几种,比如双极性晶体管BJT,结型场效应晶体管(JFET)和金属氧化物半导体场效应晶体管(MOSFET)。然后它们又分什么NPN,PNP,N沟通,P沟道,这样算起来种类还是不少的。
就输入阻抗而言,一般是MOSFET>JFET>BJT的,我是怎么记住这个的呢?我没有刻意去记住,而是理解的方式,脑子里面回想下这几个管子的结构也就出来了,这里也分享一下。
大体是这样的:
BJT三极管我们应该都比较熟,其是电流驱动的,其放大的时候,要给它合适偏置,b和e之间是有正向电压的,是一个有正向压降的PN结,处于放大区的时候里面是有电流流动的。

JFET分立管子用得非常少,我到目前还没用过这个,但是教材上都有这个器件的结构,集成运放也是有这种结构的,其工作的时候,输入端也可以理解为一个PN结,不过是反偏的(通过反偏控制耗尽区的厚度来控制导电沟道的宽度),也就是说电流很小。但是我们知道施加反向电压的PN结也是会漏电的,就像我们用的二极管,也会有漏电流这个参数。显然,这个电流要一般比三极管的输入电流Ibe要小,那么其直流输入阻抗也就比其要大。

MOSFET我们用得比较多,其栅极与衬底极是二氧化硅绝缘体,既然称为绝缘体,那阻抗就是非常大了,基本没有电流,因此,它的直流输入阻抗是最高的。

大概总结下:
BJT放大时输入端是正向的PN结,电流较大;JFET放大时输入端是反向的PN结,电流主要是漏电流,很小;CMOS放大时输入端是绝缘的,直流电流最小。
扯得有点远,其实说这个主要是因为我在网上看到几款放大器芯片的偏置电流表格,它们之间差异是很大的……
查看原文:https://www.dianyuan.com/eestar/article-5977.html
更多精彩内容,尽在电子星球 APP(https://www.eestar.com/)