欢迎光临散文网 会员登陆 & 注册

spq法的简单运用(二)

2023-08-05 12:42 作者:梦违Changer  | 我要投稿

我们提升难度,来看例二

例二:非负实数a%E3%80%81b%E3%80%81c满足ab%2Bbc%2Bca%3D1%0A,求证:%5Cfrac%7B1%2Ba%5E2%20b%5E2%20%20%7D%7B(a%2Bb)%5E2%20%7D%2B%5Cfrac%7B1%2Bb%5E2%20c%5E2%20%20%7D%7B(b%2Bc)%5E2%20%7D%2B%5Cfrac%7B1%2Bc%5E2%20a%5E2%20%20%7D%7B(c%2Ba)%5E2%20%7D%5Cgeq%20%5Cfrac%7B5%7D%7B2%7D%20

证明:左式=%5Cfrac%7B%5Csum_%7Bcyc%7D%5E%7B%7D(1%2Ba%5E2%20b%5E2%20)(a%2Bc)%5E2(b%2Bc)%5E2%7D%7B(a%2Bb)%5E2(b%2Bc)%5E2(c%0A%2Ba)%5E2%20%20%7D%20%20=%5Cfrac%7B%5Csum_%7Bcyc%7D%5E%7B%7D(1%2Ba%5E2%20b%5E2)(1%2Bc%5E2)%5E2%7D%7B(1%2Ba%5E2)(1%2Bb%5E2)(1%2Bc%5E2)%7D%20

故原不等式%5Ciff%202%5Csum_%7Bcyc%7D%5E%7B%7D(1%2Ba%5E2%20b%5E2)(1%2Bc%5E2)%5E2%5Cgeq%205(1%2Ba%5E2)(1%2Bb%5E2)(1%2Bc%5E2)

%5Ciff%206%2B2%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%20b%5E2%20%2B4%20%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%20%2B12a%5E2%20b%5E2%20c%5E2%20%2B2%5Csum_%7Bcyc%7D%5E%7B%7Da%5E4%20%2B2a%5E2%20b%5E2%20c%5E2%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%5Cgeq5%2B5%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%2B5%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%20b%5E2%20%2B5a%5E2%20b%5E2%20c%5E2%20%20%20%20%20%5Ciff%201-%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2-3%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2b%5E2%20%2B7a%5E2%20b%5E2%20c%5E2%2B2%5Csum_%7Bcyc%7D%5E%7B%7Da%5E4%2B2a%5E2%20b%5E2%20c%5E2%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%20%5Cgeq0%20%20%20%20%20

%5Csum_%7Bcyc%7D%5E%7B%7Da%3Ds%E3%80%811%3D%5Csum_%7Bcyc%7D%5E%7B%7Dab%3Dq%E3%80%81abc%3Dp%0A

%5Ciff%201-(s%5E2%20-2)-3(1-2ps)%2B7p%5E2%2B2(s%5E4-4s%5E2%2B4sp%2B2)%2B2p%5E2%20(s%5E2%20-2)%5Cgeq%200

%5Ciff%202s%5E4%20%2B(2p%5E2-9)s%5E2%2B14ps%2B3p%5E2%2B4%5Cgeq%200%20%20%20%20(*)

我们不妨直接借用例一的证法:使用三次Schur%0A不等式:9p%5Cgeq%0A4s-s%5E3%0A进行放缩

那么(*)%E5%B7%A6%E8%BE%B9%5Cgeq%20%5Cfrac%7B2%7D%7B81%7Ds%5E8-%5Cfrac%7B13%7D%7B81%7D%20s%5E6%2B%5Cfrac%7B44%7D%7B81%7D%20s%5E4%20-%5Cfrac%7B59%7D%7B27%7D%20s%5E2%20%2B4

记不等号右边的式子为关于s的函数g(s),画出其图像:

可以看到,对于s%5Cin%20%5B2%2C%2B%E2%88%9E)%0Ag(s)%5Cgeq%200是我们想要的,但对于s%5Cin%20%5B%5Csqrt%7B3%7D%20%2C2%5D,我们仍需讨论。不幸的是,这个讨论极为困难,因为(*)式不等号左边p是作为s的系数存在,未完全分离,不容易继续放缩。

但我们不妨换一种放缩方式,不去放p,而将sp一起放掉,这就需要四次Schur%0A不等式:6sp%5Cgeq%20%20-s%5E4%2B5s%5E2-4 

那么,(*)%5Ciff%20(2s%5E2%2B3)%20p%5E2%2B14sp%5Cgeq%20%209s%5E2-2s%5E4%20-4%20

%E5%B7%A6%E8%BE%B9%5Cgeq%20(2s%5E2%2B3)%20(%5Cfrac%7B1%7D%7B81%7Ds%5E6-%5Cfrac%7B8%7D%7B81%7Ds%5E4%2B%5Cfrac%7B16%7D%7B81%7Ds%5E2)%20%20%20%20%20%20-%5Cfrac%7B7%7D%7B3%7Ds%5E4%2B%5Cfrac%7B35%20%7D%7B3%7D%20s%5E2-%5Cfrac%7B28%7D%7B3%7D

只需证(2s%5E2%2B3)%20(%5Cfrac%7B1%7D%7B81%7Ds%5E6-%5Cfrac%7B8%7D%7B81%7Ds%5E4%2B%5Cfrac%7B16%7D%7B81%7Ds%5E2)%20%20%20%5Cgeq%20%20%20%20%5Cfrac%7B1%7D%7B3%7Ds%5E4-%5Cfrac%7B8%7D%7B3%7D%20s%5E2%2B%5Cfrac%7B16%7D%7B3%7D

%5Ciff%20%5Cfrac%7B2%7D%7B81%7Ds%5E8-%5Cfrac%7B13%7D%7B81%7D%20s%5E6-%5Cfrac%7B19%7D%7B81%7D%20s%5E4%20%2B%5Cfrac%7B88%7D%7B27%7D%20s%5E2%20-%5Cfrac%7B16%20%7D%7B3%7D%20%5Cgeq%200

u(s)为上式不等号左边的部分,注意a%E3%80%81b%E3%80%81c%0A非负且q%3D1,故s%5Cgeq%20%5Csqrt%7B3q%7D%20%3D%5Csqrt%7B3%7D%20

从函数图像可以看出u(s)%5B%5Csqrt%7B3%7D%2C%2B%20%E2%88%9E)上恒大于等于0,从而原命题得证,下面我们证明这一断言:

显然u(s)是定义在R上的连续函数,且u(s)%3D0仅有四个实根:%5Cpm%202%E3%80%81%5Cpm%20%5Csqrt%7B3%7D%20

u'(s)%3D%5Cfrac%7B16%7D%7B81%7Ds%5E7%20-%5Cfrac%7B78%7D%7B81%7Ds%5E5-%5Cfrac%7B76%7D%7B81%7Ds%5E3%2B%5Cfrac%7B176%7D%7B27%7Ds%20%20%20%20%0A

u'(s)%3D0有五个实根:%5Cpm%202%E3%80%810%E3%80%81%5Cpm%20%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20

我们只考虑u'(s)%5B%5Csqrt%7B3%7D%2C%2B%20%E2%88%9E)上的取值

u'(%5Csqrt%7B3%7D)%3D%5Cfrac%7B10%20%7D%7B27%7D%5Csqrt%7B3%7D%20%20%20%EF%BC%9E0%EF%BC%8Cu'(%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20)%3Du'(2)%3Du'(0)%3D0

注意到u'(s)(0%2C%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20)上与x轴没有交点,且%5Csqrt%7B3%7D%20%5Cin%20(0%2C%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20)%E3%80%81u'(%5Csqrt%7B3%7D)%EF%BC%9E0%20

从而u'(s)(0%2C%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20)上恒大于0

同理可知u'(s)(%20%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20%2C2%0A)上恒小于0,在(2%2C%2B%20%E2%88%9E)上恒大于0

u(s)(%5Csqrt%7B3%7D%20%2C%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20)上单调递增,在(%20%5Csqrt%7B%5Cfrac%7B7%2B%5Csqrt%7B2161%20%7D%20%7D%7B16%20%7D%20%20%7D%20%2C2%0A)上单调递减,在(2%2C%2B%20%E2%88%9E)上单调递增

注意u(%5Csqrt%7B3%7D%20)%3Du(2)%3D0,从而u(s)%5Cgeq%200,当且仅当s%3D%5Csqrt%7B3%7D%20%E6%88%962时取等

s%3D%5Csqrt%7B3%7D意味着a%3Db%3Dc,与Schur不等式的取等条件矛盾

故仅有s%3D2时等号成立,此时(a%2Cb%2Cc)%3D(1%2C1%2C0)(1%2C0%2C1)(0%2C1%2C1)

至此,原命题得证!


spq法的简单运用(二)的评论 (共 条)

分享到微博请遵守国家法律