欢迎光临散文网 会员登陆 & 注册

8.1第1个ARM裸板程序及引申(上)

2020-08-15 13:43 作者:韦东山  | 我要投稿

第001节_辅线1_硬件知识_LED原理图

当我们学习C语言的时候,我们会写个Hello程序。那当我们写ARM程序,也该有一个简单的程序引领我们入门,这个程序就是点亮LED。

我们怎样去点亮一个LED呢? 分为三步:

  1. 看原理图,确定控制LED的引脚;

  2. 看主芯片的芯片手册,确定如何设置控制这个引脚;

  3. 写程序;

先来讲讲怎么看原理图: LED样子有很多种,像插脚的,贴片的。

Chapter8 lesson1 001.jpg

它们长得完全不一样,因此我们在原理图中将它抽象出来。

点亮LED需要通电源,同时为了保护LED,加个电阻减小电流。 控制LED灯的亮灭,可以手动开关LED,但在电子系统中,不可能让人来控制开关,通过编程,利用芯片的引脚去控制开关。

Chapter8 lesson1 002.jpg

LED的驱动方式,常见的有四种。

  • 方式1:使用引脚输出3.3V点亮LED,输出0V熄灭LED。

  • 方式2:使用引脚拉低到0V点亮LED,输出3.3V熄灭LED。

有的芯片为了省电等原因,其引脚驱动能力不足,这时可以使用三极管驱动。

  • 方式3:使用引脚输出1.2V点亮LED,输出0V熄灭LED。

  • 方式4:使用引脚输出0V点亮LED,输出1.2V熄灭LED。


由此,主芯片引脚输出高电平/低电平,即可改变LED状态,而无需关注GPIO引脚输出的是3.3V还是1.2V。 所以简称输出1或0:

  • 逻辑1-->高电平

  • 逻辑0-->低电平

第002节_辅线1_硬件知识_S3C2440启动流程与GPIO操作

在原理图中,同名的Net表示是连在一起的。


怎么样GPF4怎么输出1或0?

1. 配置为输出引脚;

2. 设置状态;


因此,设置GPFCON[9:8]=0b01,即GPF4配置为输出;

设置GPFDAT[4]=1或者0,即输出高电平或低电平; 


S3C2440框架:

Chapter8 lesson2 001.png


S3C2440启动流程:

  • Nor启动:

Nor Flash的基地址为0,片内RAM地址为0x4000 0000;

CPU读出Nor上第1个指令(前4字节),执行;

CPU继续读出其它指令执行。

  • Nand启动:

片内4k RAM基地址为0,Nor Flash不可访问;

2440硬件把Nand前4K内容复制到片内的RAM,然后CPU从0地址取出第1条指令执行。 


第003节_编写第1个程序点亮LED

在开始写第1个程序前,先了解一些概念。

2440是一个SOC,它里面的CPU有R1、R2、R3……等 寄存器;

它里面的GPIO控制器也有很多寄存器,如 GPFCON、GPFDAT。

这两个寄存器是有差异的,在写代码的时候,CPU里面的寄存器可以直接访问,其它的寄存器要以地址进行访问。


把GPF4配置为输出,需要把0x100写入GPFCON这个寄存器,即写到0x5600 0050上;

把GPF4输出1,需要把0x10写到地址0x5600 0054上;

把GPF4输出0,需要把0x00写到地址0x5600 0054上;

这里的写法会破坏寄存器的其它位,其它位是控制其它引脚的,为了让第一个裸板程序尽可能的简单,才简单粗暴的这样处理。


写程序需要用到几条汇编代码:

①LDR  (load):读寄存器

举例:LDR R0,[R1]

假设R1的值是x,读取地址x上的数据(4字节),保存到R0中;


②STR  (store):写寄存器

举例:STR R0,[R1]

假设R1的值是x,把R0的值写到地址x(4字节);


③B  跳转


④MOV  (move)移动,赋值 举例1:MOV R0,R1把R1的值赋值给R0;

举例2:MOV R0,#0x100 把0x100赋值给R0,即R0=0x100;


⑤LDR

举例:LDR R0,=0x12345678这是一条伪指令,即实际中并不存在这个指令,他会被拆分成几个真正的ARM指令,实现一样的效果。 最后结果是R0=0x12345678。


为什么会引入伪指令?
在ARM的32位指令中,有些字节表示指令,有些字节表示数据,因此表示数据的没有32位,不能表示一个32位的任意值,只能表示一个较小的简单值,这个简单值称为立即数。引入伪指令后,利用LDR可以为R0赋任意大小值,编译器会自动拆分成真正的的指令,实现目的。

有了前面5个汇编指令的基础,我们就可以写代码了。

第一个程序只能是汇编,以前你们可能写过单片机程序,一上来就写main()函数,那是编译器帮你封装好了。


第一个LED程序代码如下: 


将代码上传到服务器, 先编译: 

再链接: 

生成bin文件: 

以上的命令,要是我们每次都输入会容易输错,因此我们把他们写到一个文件里,这个文件就叫Makefile. 关于Makefile以后会讲。本次所需的Makefile如下: 

以后只需要 使用 make 命令进行编译, make clean 命令进行清理。

最后烧写到开发板上,即可看到只有一个LED亮,符合我们预期。


第004节_汇编与机器码

前面介绍过伪指令,伪指令是实际不存在的ARM命令,编译器在编译时转换成存在的ARM指令。我们代码中的ldr r1, =0x56000050这条伪指令的真实指令时什么呢?

我们可以通过反汇编来查看。


在前面的Makefile中加上: 

上传服务器,编译。

生成的led_on.dis就是反汇编文件。led_on.dis如下: 

第一列是地址,第二列是机器码,第三列是汇编;

在反汇编文件里可以看到,ldr r1, =0x56000050被转换成ldr r1, [pc, #20],pc+20地址的值为0x56000050,通过这种方式为r1赋值。 对于立即数0x100而言,ldr r0,=0x100即是转换成了mov r0,#256;

在2440这个SOC里面,R0-R15都在CPU里面,其中:

为什么 PC=当前指令+8

ARM指令采用流水线机制,当前执行地址A的指令,已经在对地址A+4的指令进行译码,已经在读取地址A+8的指令,其中A+8就是PC的值。


C/汇编(给人类方便使用的语言)———编译器———>bin,含有机器码(给CPU使用) 


第005节_编程知识_进制

17个苹果,有4种表示方式,它们表示同一个数值:


计算验证:

十进制:17=1x10^1 + 7x10^0; 

二进制:17=1x2^4 + 0x2^3 + 0x2^2 + 0x2^1 + 1x2^0; 

八进制:17=2x8^1 + 1x8^0; 

十六进制:17=1x16^1 + 1x16^0;


为何引入二进制?

在硬件角度看,晶体管只有两个状态:on是1,off是0; 数据使用多个晶体管进行表示,用二进制描述,吻合硬件状态。 


为何引入八进制?

将二进制的三位作为一组,把这一组作为一位进行表示,就是八进制。 


为何引入十六进制?

将二进制的四位作为一组,把这一组作为一位进行表示,就是十六进制。八进制和十六进制方便我们描述,简化了长度。


如何快速的转换2/8/16进制: 首先记住8 4 2 1 ——>二进制权重 


举例1:

将二进制0b01101110101转换成八进制: 将二进制从右到左,每三个分成一组:

Chapter8 lesson5 002.png

结果就是1565;


举例2:

将二进制0b01101110101转换成十六进制: 将二进制从右到左,每四个分成一组:

Chapter8 lesson5 003.png

结果就是375;


举例3:

将十六进制0xABC1转换成二进制: 将十六进制从右到左,每个分成四位:

Chapter8 lesson5 004.png

结果就是1010 1011 1100 0001;


在C语言中怎么表示这些进制呢?

十进制: int a = 96; 

八进制: int a = 0140;//0开头 

十六进制: int a = 0x60;//0x开头

用0b开头表示二进制,约定俗成的规定。 


视频教程👇

韦东山升级版全系列嵌入式免费视频_快速入门篇


8.1第1个ARM裸板程序及引申(上)的评论 (共 条)

分享到微博请遵守国家法律