第三章. ROS:BCR信号的第二信使
摘要
ROS不仅是引起氧化应激的有毒物质,还作为第二信使氧化ROS敏感的信号分子,增敏多种受体介导的信号传递。过氧化氢作为一种ROS由于相对稳定,被认为是机体内较为重要的第二信使。过氧化氢源自膜定位的NADPH氧化酶(NOXes)产生的超氧化物歧化物,继而被超氧化物歧化酶(SOD)转化得到,此外,超氧化物和过氧化氢也是线粒体呼吸链和多种代谢反应的副产物。BCR交联过程的两个阶段能诱导ROS的产生:BCR交联后即刻至1 h,以及交联后2 h重新开始持续4-6 h。早期ROS的产生由NOX的一种亚型NOX2介导,但本身不参与BCR信号转导;而后期ROS的产生可以增强BCR信号。尽管之前认为线粒体呼吸能延长BCR交联相关ROS的产生,但我们最近的研究表明NOX3,另一种NOX亚型,在后期ROS的产生中扮演着核心角色。NOXes被证明是产生ROS的内体(即氧化还原体,redoxosome)的一个组成部分,以及内吞的受体和受体相关的信号分子(比如在氧化还原体中,由NOXes催化产生的ROS通过内吞的受体增强信号)。值得注意的是,NOXes和氧化还原体在BCR信号转导中的作用还有待进一步阐明。
关键词
#Reactive oxygen species #BCR signaling #Second messenger #NADPH oxidases
#活性氧 #BCR信号 #第二信使 #NADPH氧化酶
本章参考
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221
Bedard K, Krause KH (2007) The NOX family of ROSgenerating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313
Brandes RP, Weissmann N, Schroder K (2014) Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 76:208–226
Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K, Dinsdale D, Pulford K, Khan M, Musset B et al (2010) HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 11:265–272
Capasso M, DeCoursey TE, Dyer MJ (2011) pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol 21:20–28
Chaturvedi A,Martz R,Dorward D,Waisberg M, Pierce SK (2011) Endocytosed BCRs sequentially regulate MAPK and Akt signaling pathways from intracellular compartments. Nat Immunol 12:1119–1126
Corcoran A, Cotter TG (2013) Redox regulation of protein kinases. FEBS J 280:1944–1965
Di Marzo N, Chisci E, Giovannoni R (2018) The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cells 7:156
Feng YY, Tang M, Suzuki M, Gunasekara C, Anbe Y, Hiraoka Y, Liu J, Grasberger H, Ohkita M, Matsumura Y et al (2019) Essential role of NADPH oxidase-dependent production of reactive oxygen species in maintenance of sustained B cell receptor signaling and B cell proliferation. J Immunol 202:2546–2557
Gimenez M, Schickling BM, Lopes LR, Miller FJ Jr (2016) Nox1 in cardiovascular diseases: regulation and pathophysiology. Clin Sci (Lond) 130:151–165
Hempel N, Trebak M (2017) Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 63:70–96
Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421
Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273:15366–15372
Li Q, Harraz MM, Zhou W, Zhang LN, Ding W, Zhang Y, Eggleston T, Yeaman C, Banfi B, Engelhardt JF (2006) Nox2 and Rac1 regulate H2O2- dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol Cell Biol 26:140–154
Li Q, Spencer NY, Oakley FD, Buettner GR, Engelhardt JF (2009) Endosomal Nox2 facilitates redoxdependent induction of NF-kappaB by TNF-alpha. Antioxid Redox Signal 11:1249–1263
Lismont C, Revenco I, Fransen M (2019) Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int J Mol Sci 20:3673
Lustgarten MS, Bhattacharya A, Muller FL, Jang YC, Shimizu T, Shirasawa T, Richardson A, Van Remmen H (2012) Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem Biophys Res Commun 422:515–521
Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2: 535–562
Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399
Miller FJ Jr, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS (2007) Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 101:663–671
Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci USA 106:17615–17622
Oakley FD, Smith RL, Engelhardt JF (2009) Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL- 1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane. J Biol Chem 284:33255–33264
Prieto-Bermejo R, Hernandez-Hernandez A (2017) The importance of NADPH oxidases and redox signaling in angiogenesis. Antioxidants (Basel) 6:32
Quijano C, Trujillo M, Castro L, Trostchansky A (2016) Interplay between oxidant species and energy metabolism. Redox Biol 8:28–42
Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13
Richards SM, Clark EA (2009) BCR-induced superoxide negatively regulates B-cell proliferation and T-cellindependent type 2 Ab responses. Eur J Immunol 39:3395–3403
Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453– R462
Singh DK, Kumar D, Siddiqui Z, Basu SK, Kumar V, Rao KV (2005) The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121: 281–293
Spencer NY, Engelhardt JF (2014) The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 53:1551–1564
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299
Tsutsumi R, Harizanova J, Stockert R, Schroder K, Bastiaens PIH, Neel BG (2017) Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun 8:466
Wheeler ML, Defranco AL (2012) Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J Immunol 189:4405–4416
Wienands J, Larbolette O, Reth M (1996) Evidence for a preformed transducer complex organized by the B cell antigen receptor. Proc Natl Acad Sci USA 93:7865– 7870
Yoboue ED, Sitia R, Simmen T (2018) Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 9:331
Zito E (2015) ERO1: A protein disulfide oxidase and H2O2 producer. Free Radic Biol Med 83:299–304
