欢迎光临散文网 会员登陆 & 注册

公切线问题的通解通法(2022全国甲(文)导数)

2022-09-22 21:10 作者:数学老顽童  | 我要投稿

(2022全国甲文,20)已知函数f%5Cleft(%20x%20%5Cright)%20%3Dx%5E3-xg%5Cleft(%20x%20%5Cright)%20%3Dx%5E2%2Ba,曲线y%3Df%5Cleft(%20x%20%5Cright)%20在点%5Cleft(%20x_1%2Cf%5Cleft(%20x_1%20%5Cright)%20%5Cright)%20处的切线也是曲线y%3Dg%5Cleft(%20x%20%5Cright)%20的切线.

(1)若x_1%3D-1,求a

(2)求a的取值范围.

解:(1)f%5Cleft(%20-1%20%5Cright)%20%3D%5Cleft(%20-1%20%5Cright)%20%5E3-%5Cleft(%20-1%20%5Cright)%20%3D0

所以切点坐标为%5Ccolor%7Bred%7D%7B%5Cleft(%20-1%2C0%20%5Cright)%20%7D

f'%5Cleft(%20x%20%5Cright)%20%3D3x%5E2-1

故该点处的切线斜率为

f'%5Cleft(%20-1%20%5Cright)%20%3D3%5Ctimes%20%5Cleft(%20-1%20%5Cright)%20%5E2-1%3D%5Ccolor%7Bred%7D%7B2%7D

故切线方程为y-0%3D2%5Cleft(%20x%2B1%20%5Cright)%20

整理得%5Ccolor%7Bred%7D%7By%3D2x%2B2%7D.

联立y%3D2x%2B2y%3Dx%5E2%2Ba,消去y,得

2x%2B2%3Dx%5E2%2Ba,

整理得x%5E2-2x%2Ba-2%3D0

依题意可知%5CDelta%3D%5Cleft(-2%5Cright)%5E2-4%5Cleft(a-2%5Cright)%3D0,

解得%5Ccolor%7Bred%7D%7Ba%3D3%7D.

(2)函数f%5Cleft(%20x%20%5Cright)x%3Dx_1处的切线斜率为

f'%5Cleft(%20x_1%20%5Cright)%20%3D3x_%7B1%7D%5E%7B2%7D-1

故该处的切线方程为

y-%5Cleft(%20x_%7B1%7D%5E%7B3%7D-x_1%20%5Cright)%20%3D%5Cleft(%203x_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20%5Cleft(%20x-x_1%20%5Cright)%20

整理得y%3D%5Ccolor%7Bred%7D%7B%5Cleft(%203x_%7B1%7D%5E%7B2%7D-1%20%5Cright)%7D%20x%5Ccolor%7Bred%7D%7B-2x_%7B1%7D%5E%7B3%7D%7D……%5Cotimes%20

设曲线y%3Dg%5Cleft(%20x%20%5Cright)%20上的切点为%5Cleft(%20x_2%2Cx_%7B2%7D%5E%7B2%7D%2Ba%20%5Cright)%20

g'%5Cleft(%20x%20%5Cright)%20%3D2x

x%3Dx_2处的切线斜率为g'%5Cleft(%20x_2%20%5Cright)%20%3D2x_2

所以此处的切线方程为

y-%5Cleft(%20x_%7B2%7D%5E%7B2%7D%2Ba%20%5Cright)%20%3D2x_2%5Cleft(%20x-x_2%20%5Cright)%20

整理得y%3D%5Ccolor%7Bred%7D%7B2x_2%7D%5Ccdot%20x%2B%5Ccolor%7Bred%7D%7Ba-x_%7B2%7D%5E%7B2%7D%7D……%5Coplus%20

因为%5Cotimes%20%5Coplus%20同一条直线,所以

%5Cbegin%7Bcases%7D%093x_%7B1%7D%5E%7B2%7D-1%3D2x_2%2C%5C%5C%09-2x_%7B1%7D%5E%7B3%7D%3Da-x_%7B2%7D%5E%7B2%7D%2C%5C%5C%5Cend%7Bcases%7D所以

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7Ba%7D%26%3D-2x_%7B1%7D%5E%7B3%7D%2Bx_%7B2%7D%5E%7B2%7D%5C%5C%0A%09%26%3D-2x_%7B1%7D%5E%7B3%7D%2B%5Cleft(%20%5Cfrac%7B3x_%7B1%7D%5E%7B2%7D-1%7D%7B2%7D%20%5Cright)%20%5E2%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B9%7D%7B4%7Dx_%7B1%7D%5E%7B4%7D-2x_%7B1%7D%5E%7B3%7D-%5Cfrac%7B3%7D%7B2%7Dx_%7B1%7D%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

h%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7B9%7D%7B4%7Dx%5E4-2x%5E3-%5Cfrac%7B3%7D%7B2%7Dx%5E2%2B%5Cfrac%7B1%7D%7B4%7D,则

%5Cbegin%7Baligned%7D%0A%09h'%5Cleft(%20x%20%5Cright)%20%26%3D9x%5E3-6x%5E2-3x%5C%5C%0A%09%26%3D3x%5Cleft(%203x%2B1%20%5Cright)%20%5Cleft(%20x-1%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

h'%5Cleft(%20x%20%5Cright)%20%3D0

解得%5Ccolor%7Bred%7D%7Bx%3D-%5Cfrac%7B1%7D%7B3%7D%7D%5Ccolor%7Bred%7D%7Bx%3D0%7D%5Ccolor%7Bred%7D%7Bx%3D1%7D

h%5Cleft(%20x%20%5Cright)的单调区间如下表所示:

%5Cbegin%7Barray%7D%7Bc%7Cc%7Cc%7Cc%7Cc%7D%0A%09x%5Cin%26%09%09%5Cleft(%20-%5Cinfty%20%2C-%5Cdfrac%7B1%7D%7B3%7D%20%5Cright)%26%09%09%5Cleft(%20-%5Cdfrac%7B1%7D%7B3%7D%2C0%20%5Cright)%26%09%09%5Cleft(%200%2C1%20%5Cright)%26%09%09%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%5C%5C%0A%09%5Chline%0A%09h'%5Cleft(%20x%20%5Cright)%26%09%09-%26%09%09%2B%26%09%09-%26%09%09%2B%5C%5C%0A%09%5Chline%0A%09h%5Cleft(%20x%20%5Cright)%26%09%09%5Csearrow%26%09%09%5Cnearrow%26%09%09%5Csearrow%26%09%09%5Cnearrow%5C%5C%0A%5Cend%7Barray%7D

h%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7Bx%3D-%5Cfrac%7B1%7D%7B3%7D%7D%5Ccolor%7Bred%7D%7Bx%3D1%7D处取得极小值,

%5Ccolor%7Bred%7D%7Bh%5Cleft(%20-%5Cfrac%7B1%7D%7B3%7D%20%5Cright)%7D%20%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B5%7D%7B27%7D%7D%5Ccolor%7Bred%7D%7Bh%5Cleft(%201%20%5Cright)%7D%20%3D%5Ccolor%7Bred%7D%7B-1%7D%3C%5Cfrac%7B5%7D%7B27%7D,

所以h%5Cleft(%20x%20%5Cright)%20的值域为%5Cleft%5B%20-1%2C%2B%5Cinfty%20%5Cright)%20

所以%5Ccolor%7Bred%7D%7Ba%5Cin%20%5Cleft%5B%20-1%2C%2B%5Cinfty%20%5Cright)%20%7D.


公切线问题的通解通法(2022全国甲(文)导数)的评论 (共 条)

分享到微博请遵守国家法律