欢迎光临散文网 会员登陆 & 注册

数学派每日一题-3.21

2023-03-21 23:27 作者:ulsmallzhou  | 我要投稿

题目一如下图:

解析:

本题考查的是复数的基础知识。首先,由i(1-z)%3D1两侧同时乘以-i(这一操作与两侧同时除以i是等价的),可得1-z%3D-i,即z%3D1%2Bi

两侧取共轭,我们得到了%5Coverline%7Bz%7D%3D%5Coverline%7B1%2Bi%7D%3D1-i,因此z%2B%5Coverline%7Bz%7D%3D(1%2Bi)%2B(1-i)%3D2即为所求。

换一个思路,由共轭复数的几何含义(复平面上关于实轴对称的两个复数),一个复数与其共轭复数的和应当是一个实数(虚部相互抵消),且该实数应当是该复数实部的两倍(实部相等相加),所以z%2B%5Coverline%7Bz%7D%3D2Re(z)%3D2Re(1%2Bi)%3D2

题目二如下图:

解析:

首先,抛物线方程x%5E2%3D6y给定,我们可以先写出焦点F的坐标%5Cleft(0%2C%5Cfrac%7B3%7D%7B2%7D%5Cright)

然后,设P点坐标为%5Cleft(x_0%2C%5Cfrac%7Bx_0%5E2%7D%7B6%7D%5Cright),可以写出此时切线l的方程y-%5Cfrac%7Bx_0%5E2%7D%7B6%7D%3D%5Cfrac%7Bx_0%7D%7B3%7D(x-x_0),即y%3D%5Cfrac%7Bx_0%7D%7B3%7Dx-%5Cfrac%7Bx_0%5E2%7D%7B6%7D。由l_1l平行,可设l_1的方程为y%3D%5Cfrac%7Bx_0%7D%7B3%7Dx%2B%5Clambda,与抛物线方程联立,就得到了M%2CN两点横坐标所满足的方程%5Cfrac%7Bx_0%7D%7B3%7Dx%2B%5Clambda%3D%5Cfrac%7Bx%5E2%7D%7B6%7D,化简后即x%5E2-2x_0x-6%5Clambda%3D0。为了保证该直线与抛物线有两个不同的交点,应当保证%5CDelta%3E0,即x_0%5E2%2B6%5Clambda%3E0。从几何含义上讲,l_1应当在l上方,计算判别式得到的结果与该结论一致。

接下来,我们来处理%5Cangle%20MPN%3D90%C2%B0的条件。几何上的垂直转化为坐标的计算,考虑向量的点乘是一种比较好的办法(当然,两斜率之积为-1也可以,不过需要单独考虑水平-竖直的情形)。设M%2CN两点的坐标分别为%5Cleft(x_1%2C%5Cfrac%7Bx_1%5E2%7D%7B6%7D%5Cright)%2C%5Cleft(x_2%2C%5Cfrac%7Bx_2%5E2%7D%7B6%7D%5Cright),则

%5Cvec%7BMP%7D%3D%5Cleft(x_0-x_1%2C%5Cfrac%7Bx_0%5E2-x_1%5E2%7D%7B6%7D%5Cright)%2C%5Cvec%7BNP%7D%3D%5Cleft(x_0-x_2%2C%5Cfrac%7Bx_0%5E2-x_2%5E2%7D%7B6%7D%5Cright)

由垂直条件,即得

%5Cbegin%7Baligned%7D0%26%3D(x_0-x_1)(x_0-x_2)%2B%5Cleft(%5Cfrac%7Bx_0%5E2-x_1%5E2%7D%7B6%7D%5Cright)%5Cleft(%5Cfrac%7Bx_0%5E2-x_2%5E2%7D%7B6%7D%5Cright)%5C%5C%26%3D%5Cfrac%7B(x_0-x_1)(x_0-x_2)%7D%7B36%7D(36%2B(x_0%2Bx_1)(x_0%2Bx_2))%5C%5C%26%3D%5Cfrac%7Bx_0%5E2-x_0(x_1%2Bx_2)%2Bx_1x_2%7D%7B36%7D(36%2Bx_0%5E2%2Bx_0(x_1%2Bx_2)%2Bx_1x_2)%5Cend%7Baligned%7D

由于上面我们已经得到了x_1%2Cx_2满足的二次方程,所以由韦达定理我们可以得知

%5Cbegin%7Bcases%7Dx_1%2Bx_2%3D2x_0%5C%5Cx_1x_2%3D-6%5Clambda%5Cend%7Bcases%7D

于是,我们可以继续进行计算

%5Cbegin%7Baligned%7D0%26%3D%5Cfrac%7Bx_0%5E2-x_0(x_1%2Bx_2)%2Bx_1x_2%7D%7B36%7D(36%2Bx_0%5E2%2Bx_0(x_1%2Bx_2)%2Bx_1x_2)%5C%5C%26%3D%5Cfrac%7Bx_0%5E2-x_0(2x_0)-6%5Clambda%7D%7B36%7D(36%2Bx_0%5E2%2Bx_0(2x_0)-6%5Clambda)%5C%5C%26%3D-%5Cfrac%7Bx_0%5E2%2B6%5Clambda%7D%7B12%7D(12%2Bx_0%5E2-2%5Clambda)%5Cend%7Baligned%7D

而前面我们已经得出了x_0%5E2%2B6%5Clambda%3E0的结论,因此只能12%2Bx_0%5E2-2%5Clambda%3D0,即%5Clambda%3D6%2B%5Cfrac%7Bx_0%5E2%7D%7B2%7D。换言之,我们将垂直条件转化为了x_0%2C%5Clambda之间的一个等式关系。

接下来,我们计算题目中的两个距离d_1%2Cd_2。由点与直线之间的距离公式,我们有

d_1%3D%5Cfrac%7B%7C-%5Cfrac%7B9%7D%7B2%7D%2B3%5Clambda%7C%7D%7B%5Csqrt%7Bx_0%5E2%2B9%7D%7D%3D%5Cfrac%7B3(%5Clambda-%5Cfrac%7B3%7D%7B2%7D)%7D%7B%5Csqrt%7Bx_0%5E2%2B9%7D%7D%2Cd_2%3D%5Cfrac%7B%5Cleft%7C-%5Cfrac%7B9%7D%7B2%7D-%5Cfrac%7Bx_0%5E2%7D%7B2%7D%5Cright%7C%7D%7B%5Csqrt%7Bx_0%5E2%2B9%7D%7D%3D%5Cfrac%7B%5Clambda-%5Cfrac%7B3%7D%7B2%7D%7D%7B%5Csqrt%7Bx_0%5E2%2B9%7D%7D

二者之比%5Cfrac%7Bd_1%7D%7Bd_2%7D%3D3是一个常数,因此本题答案为3。


注:题目来源为QQ小程序-秒数联盟数学派-每日壹题,欢迎各位前来答题!


数学派每日一题-3.21的评论 (共 条)

分享到微博请遵守国家法律