欢迎光临散文网 会员登陆 & 注册

Prime Dream(2)——素数定理的推论

2022-02-04 17:27 作者:子瞻Louis  | 我要投稿

专栏文集:《杂文集》《数学分析》

本系列文集:《Prime Dream》

简概

自然数的乘法赋予了自然数集一种特殊的结构,从而诞生了整除这一关系,而有一类数,无法找到除了1与它本身外能够整除它的整数,这类数就叫做素数(prime number)质数。它们的分布是十分不规则的,因此对它的研究可以说是十分艰难的,从几千年前的欧几里得,到如今,有关素数的难题出现了许许多多,诸如哥德巴赫猜想,孪生素数猜想,世界七大难题之一的黎曼假设等,尽管如此,数学家们也始终执着地追求着看清这其中的奥秘

之前有一期专栏中有提到过Euclid定理——素数有无穷多个,即

%5Cpi(x)%5Crightarrow%5Cinfty%20%5Cqquad%20(x%5Crightarrow%5Cinfty)

这也令对素数的研究更加复杂了,毕竟如果是有限个素数那研究起来多方便。实际上最大的困难之处还是在于素数的分布太杂乱了,要得到一个精确的公式是十分不容易的。本期只展示素数定理的等价形式及推论

Tchebyshev的两个函数与素数定理

首先从切比雪夫的两个函数出发:

%5Cvartheta(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Clog%20p

%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)

利用素数示性函数:

%5Cmathrm%20p(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20n%5Cin%5Cmathbb%20P%20%5C%5C%200%2C%20%20%26%20n%5Cnotin%5Cmathbb%20P%0A%5Cend%7Barray%7D%5Cright.

发现若将n取不大于x的所有整数并求和刚好就是不大于x的素数个数,即

%5Cpi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cmathrm%20p(n)

%5CRightarrow%20%5Cmathrm%20p(n)%3D%5Cpi(n)-%5Cpi(n-1)

将其代入到Tchebyshev theta函数中,因为当%5Cdelta%3E0时,在%5B2-%5Cdelta%2C2%5D的范围内没有素数,所以可将求和域改为2-δ到x,利用Able求和公式,可得

%5Cbegin%7Baligned%7D%5Cvartheta(x)%26%3D%5Csum_%7B2-%5Cdelta%3Cn%5Cle%20x%7D%5Cmathrm%20p(n)%5Clog%20n%5C%5C%26%3D%5Cpi(x)%5Clog%20x-%5Cpi(2-%5Cdelta)%5Clog(2-%5Cdelta)-%5Cint_%7B1-%5Cdelta%7D%5Ex%5Cpi(t)%5Cmathrm%20d%5Clog%20t%5C%5C%26%3D%5Cpi(x)%5Clog%20x-%5Cint_%7B2-%5Cdelta%7D%5Ex%5Cfrac%7B%5Cpi(t)%7Dt%5Cmathrm%20dt%5Cend%7Baligned%7D

接下来令%5Cdelta%5Crightarrow0%5E%2B,得到

%5Cpi(x)%5Clog%20x%3D%5Cvartheta(x)%2B%5Cint_%7B2%5E-%7D%5Ex%5Cfrac%7B%5Cpi(t)%7D%7Bt%7D%5Cmathrm%20dt

为了方便采用记号 %5Cint_%7B2%5E-%7D%5Ex%3A%3D%5Clim_%7B%5Cdelta%5Cto0%5E%2B%7D%5Cint_%7B2-%5Cdelta%7D%5Ex

  • #)%5Cfrac%7B%5Cpi(x)%5Clog%20x%7Dx%3D%5Cfrac%7B%5Cvartheta(x)%7Dx%2B%5Cfrac1x%5Cint_%7B2%5E-%7D%5Ex%5Cfrac%7B%5Cpi(t)%7D%7Bt%7D%5Cmathrm%20dt

因此可以通过Tchebyshev theta函数间接对素数分布进行研究

素数定理(prime number theorem)描述的正是

  • 1)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%3D1%5Cqquad%5Cleft(%5Cpi(x)%5Csim%5Cfrac%7Bx%7D%7B%5Clog%20x%7D%5Cright)

当然这只是它最简单的形式。我们可以由此推出与它等价的两种形式

从#式出发,上一期专栏中我们证明了存在两个常数C_1%2CC_2,使得

C_1%5Cle%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%5Cle%20C_2

从而有

%5Cfrac%7BC_1%7D%7B%5Clog%20x%7D%5Cle%5Cfrac%7B%5Cpi(x)%7D%7Bx%7D%5Cle%20%5Cfrac%7BC_2%7D%7B%5Clog%20x%7D

于是#)式中的积分项

%5Cfrac%7BC_1%7Dx%5Cint_2%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20dt%5Cle%5Cfrac1x%5Cint_2%5Ex%5Cfrac%7B%5Cpi(t)%7D%7Bt%7D%5Cmathrm%20dt%5Cle%5Cfrac%7BC_2%7Dx%5Cint_2%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20dt

而又有

0%3C%5Cfrac%7BC%7Dx%5Cint_2%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20dt%3D%5Cfrac%20C%7B%5Clog%20x%7D-%5Cfrac%20%7B2C%7D%7Bx%5Clog2%7D%2B%5Cfrac%20Cx%5Cint_2%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2t%7D%5Cxrightarrow%7Bx%5Cto%5Cinfty%7D0

所以可得以下等式:

  • 2)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cvartheta(x)%7D%7Bx%7D

若能证明右侧的极限为1,则就能间接得到素数定理,至此就得到了素数定理的一个等价表述

现在将注意力转到Tchebyshev psi函数上,它是对不超过x的素数的乘方求和,

%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%3D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Csum_%7Bp%5Em%5Cle%20x%7D%5Clog%20p

因为不超过x的p乘方总是有限的,所以最右边是一有限和,不难将它与theta函数联系起来

%5Cpsi(x)%3D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Csum_%7Bp%5Cle%5Csqrt%5Bm%5D%20x%7D%5Clog%20p%3D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Cvartheta(%5Csqrt%5Bm%5Dx)

注意到%5Csqrt%5Bm%5Dx%3C2m%3E%5Clog_2x时外层的求和是空的,将这些空的去掉,得到

%5Cpsi(x)%3D%5Csum_%7Bm%5Cle%5Clog_2x%7D%5Cvartheta(%5Csqrt%5Bm%5Dx)

下面来康康这两个函数的差吧

0%5Cle%5Cpsi(x)-%5Cvartheta(x)%3D%5Csum_%7B2%5Cle%20m%5Cle%5Clog_2x%7D%5Cvartheta(%5Csqrt%5Bm%5Dx)

根据Tchebyshev theta函数的定义,又可得对m%5Cge2

%5Cvartheta(%5Csqrt%5Bm%5Dx)%3D%5Csum_%7Bp%5Cle%5Csqrt%5Bm%5Dx%7D%5Clog%20p%5Cle%5Csqrt%5Bm%5Dx%5Clog%5Csqrt%5Bm%5Dx%5Cle%5Csqrt%20x%5Clog%20x

%5Cbegin%7Baligned%7D%5CRightarrow%20%5Cpsi(x)-%5Cvartheta(x)%26%5Cle%5Csum_%7B2%5Cle%20m%5Cle%5Clog_2x%7D%5Csqrt%20x%5Clog%20x%5C%5C%26%5Cle%5Csqrt%20x%5Clog%20x%5Clog_2x%3D%5Cfrac%7B%5Csqrt%20x%5Clog%5E2x%7D%7B%5Clog2%7D%5Cend%7Baligned%7D

经过上面这些粗略的放缩,得到

0%5Cle%5Cfrac%7B%5Cpsi(x)%7Dx-%5Cfrac%7B%5Cvartheta(x)%7Dx%5Cle%5Cfrac%7B%5Clog%5E2x%7D%7B%5Csqrt%20x%5Clog2%7D

当x足够大时他们的差越来越小且最终会趋于0,因此上诉不等式就是告诉了我们

  • 3)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpsi(x)%7Dx%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cvartheta(x)%7Dx

再根据2)式就能得到素数定理的另一等价表述,

素数定理的推论

假设素数定理已经成立,对1)式取自然对数,得到

%5Clim_%7Bx%5Cto%5Cinfty%7D(%5Clog%5Cpi(x)%2B%5Clog%5Clog%20x-%5Clog%20x)%3D0

再变一下,就是

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cleft%5B%5Clog%20x%5Cleft(%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright)%5Cright%5D%3D0

用epsilon语言来说就是%5Cexists%20X%5Cin%5Cmathbb%20R_%2B%2Cx%3EX时,%5Cforall%20%5Cepsilon%3E0

%5Cleft%7C%5Clog%20x%5Cleft(%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright)%5Cright%7C%3C%5Cepsilon

%5CRightarrow%5Cleft%7C%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright%7C%3C%5Cfrac%5Cepsilon%7B%5Clog%20x%7D

所以由此可得

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cleft(%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright)%3D0

又因为

%5Cfrac%7B%5Clog%5Clog%20x%7D%7B%5Clog%20x%7D%5Cxrightarrow%7Bx%5Crightarrow%5Cinfty%7D0

所以可以得到

  • 4)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%3D1

这虽然有些许不可思议——不大于给定数的素数个数总是远小于这个数的,但是仔细想想因为对数函数发散的速度很慢,以至于弥补了它们之间的差距,所以造成它们的比值极限为1

结合4)式,可知素数定义亦等价于

  • 5)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%5Cpi(x)%7D%7Bx%7D%3D1

在上式中令x沿素数集趋向无穷,即

%5Clim_%7B%5Cmathbb%20P%5Cni%20x%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%5Cpi(x)%7D%7Bx%7D%3D1

x%3Dp_n为第n个素数,而p_n%5Cto%5Cinfty%5CRightarrow%20n%5Cto%5Cinfty,且又有%5Cpi(p_n)%3Dn,代入上式即得

  • 6)%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%5Clog%20n%7D%7Bp_n%7D%3D1

素数定理的更精确形式

利用小o符号,由

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cvartheta(x)%7Dx%3D1

可以写出

%5Cvartheta(x)%3Dx%2Bo(x)%2C%20%5Cquad%20x%5Cto%5Cinfty

又由Abel求和公式,有

%5Cbegin%7Baligned%7D%5Cpi(x)%26%3D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7D%7B%5Clog%20p%7D%5C%5C%26%3D%5Cfrac%7B%5Cvartheta(x)%7D%7B%5Clog%20x%7D%2B%5Cint_%7B2%5E-%7D%5Ex%5Cfrac%7B%5Cvartheta(t)%7D%7Bt%5Clog%5E2%20t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

由此可得

%5Cpi(x)%3D%5Cfrac%7Bx%7D%7B%5Clog%20x%7D%2B%5Cint_%7B2%7D%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2t%7D%2Bo%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)

又由分部积分得

%5Cbegin%7Baligned%7D%5Cint_%7B2%7D%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2t%7D%26%3D-%5Cint_%7B2%7D%5Ext%5Cmathrm%20d%5Cfrac1%7B%5Clog%20t%7D%5C%5C%26%3D%5Cfrac2%7B%5Clog2%7D-%5Cfrac%20x%7B%5Clog%20x%7D%2B%5Cint_%7B2%7D%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%5Cend%7Baligned%7D

记 %5Cmathrm%7Bli%7D(x)%3D%5Cint_2%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D ,则

  • 7)%5Cpi(x)%3D%5Cmathrm%7Bli%7D(x)%2Bo%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)%2C%5Cquad%20x%5Cto%5Cinfty

一些情况下,使用下限为0的积分是非常方便的,因此引入

%5Cmathrm%7BLi%7D(x)%3D%5Cint_0%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%3D%5Cmathrm%7Bli%7D(x)%2B%5Cmathrm%7BLi%7D(2)

其中 %5Cmathrm%7BLi%7D(2) 取Cauchy主值,

%5Cmathrm%7BLi%7D(2)%3D%5Clim_%7B%5Cdelta%5Cto0%5E%2B%7D%5Cint_0%5E%7B1-%5Cdelta%7D%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%2B%5Cint_%7B1%2B%5Cdelta%7D%5E2%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%5Capprox%201.04%5Cdots

由此也有

  • 8)%5Cpi(x)%3D%5Cmathrm%7BLi%7D(x)%2Bo%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)%2C%5Cquad%20x%5Cto%5Cinfty

7)式与8)式都是素数定理的推论,并且事实上用他们来逼近素数计数函数比1)更精确:

来自百度百科

更进一步,可以利用大O符号进行更精确的估计,是形如:

%5Cpi(x)%3D%5Cmathrm%7BLi%7D(x)%2B%5Cmathcal%20O(A)

其中大O符号是在x趋于无穷时与li(x)的比值为0,通常情况下它是通过Tchebyshev psi函数的估计式得出,即

%5Cpsi(x)%3Dx%2B%5Cmathcal%20O(B)


Prime Dream(2)——素数定理的推论的评论 (共 条)

分享到微博请遵守国家法律