欢迎光临散文网 会员登陆 & 注册

几类特殊递推数列的矩阵算法(前篇)

2023-08-08 11:49 作者:现代微积分  | 我要投稿

前言

搁置了许久,终于回来更新以兑现前周立下的flag了。

在学习数列时,我们会遇到a_%7Bn%2B2%7D-5a_%7Bn%2B1%7D%2B6a_n%3D0这种递推式,其中一种算法是用特征根,而特征根之前做过一期专栏写了个人的奇妙理解方法,感兴趣的可以参考:

深探特征根的奥妙

而这期专栏,我们可以换种视角,从线性代数的角度来解决。

另外,在做一些数列的题中难免会遇到像a_%7Bn%2B2%7D%3Da_%7Bn%2B1%7D-a_%7Bn%7D%5CRightarrow%20T%3D6a_%7Bn%2B1%7D%3D%5Cfrac%7B1%2Ba_n%7D%7B1-a_n%7D%5CRightarrow%20T%3D4%20这种恶心的数列。答案是通过"暴力"反复迭代得出的周期,不禁让人摸不着头脑!

"这谁能想到啊?"[恼]

那么命题人的心机何在呢?今儿就来一探究竟~

另外,此篇专栏会涉及到不少矩阵运算的知识,萌新可以先参考3b1b的视频讲解:

【官方双语/合集】线性代数的本质 - 系列合集

此篇文章不针对应试,而是给数学爱好者们拓展下思路


整式的线性递推

先来讲讲其概念,所谓线性递推,也即a_%7Bn%2Bk%7D%20%3D%5Ctext%7B~%7Da_%7Bn%2Bk-1%7D%2B%5Ctext%7B~%7Da_%7Bn%2Bk-2%7D%2B...%2B%5Ctext%7B~%7Da_n(~表系数)形式,这里的

a_%7Bn%2Bk%7D%2Ca_%7Bn%2Bk-1%7D%2Ca_%7Bn%2Bk-2%7D%2C...%2Ca_n次数均为1


比如a_%7Bn%2B2%7D%3D3a_%7Bn%2B1%7D%2B4a_n为线性递推,而像a_%7Bn%2B2%7D%3D3%7B%5Ccolor%7BRed%7D%20%7Ba%5E2_%7Bn%2B1%7D%7D%7D%20%2B4a_n%2Ca_%7Bn%2B2%7D%3D3a_%7Bn%2B1%7D%2B4%7B%5Ccolor%7BRed%7D%20%7Ba_n%5E3%7D%7D%20这种有次数不为1的就不是线性递推了


再来引入矩阵表示式以便良好地衔接

对于线性方程组,如:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ax_2%3D3x_1%2B2y_1%5C%5C%0Ay_2%3D-x_1%2B4y_1%0A%5Cend%7Bmatrix%7D%5Cright.

我们想更直观地表示(x_2%2Cy_2)(x_1%2Cy_1)的映射关系,可将其化为矩阵形式:

%5Cbegin%7Bbmatrix%7D%0Ax_2%20%5C%5C%0Ay_2%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%203%20%262%20%5C%5C%0A-1%20%20%264%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Ax_1%20%5C%5C%0Ay_1%0A%5Cend%7Bbmatrix%7D

几何意义上,即向量%5Cbegin%7Bbmatrix%7D%0Ax_2%20%5C%5C%0Ay_2%0A%5Cend%7Bbmatrix%7D由向量%5Cbegin%7Bbmatrix%7D%0Ax_1%20%5C%5C%0Ay_1%0A%5Cend%7Bbmatrix%7D作线性变换%5Cbegin%7Bbmatrix%7D%0A%203%20%262%20%5C%5C%0A-1%20%20%264%0A%5Cend%7Bbmatrix%7D得到,其中矩阵%5Cbegin%7Bbmatrix%7D%0A%203%20%262%20%5C%5C%0A-1%20%20%264%0A%5Cend%7Bbmatrix%7D就类似于函数(function),只不过函数f(x)的功能是将一个x映射为一个y,而矩阵的功能则是将一个向量映射为另一个向量。由于向量起点均默认于原点,故也可视为将一个坐标(向量终点)映射为另一个坐标


先来看一道例题:已知a_1%3D1%2Ca_2%3D1%2Ca_%7Bn%2B2%7D%3D5a_%7Bn%2B1%7D-6a_n,求通项公式?

由于笔者能力暂有限,想不到更好地衔接铺垫了,所以提前剧透(

有了上述的铺垫,如果我们能将递推式化为%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D该多好!

为什么好呢?因为这样就有:%5Cbegin%7Bbmatrix%7D%0Aa_%7B3%7D%5C%5C%0Aa_%7B2%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%0Aa_%7B4%7D%5C%5C%0Aa_%7B3%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B3%7D%5C%5C%0Aa_%7B2%7D%0A%5Cend%7Bbmatrix%7D

我们便惊奇地发现,这运算不就和等比数列很相近么?

于是得到%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5E%7Bn%7D%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D

因此,要求a_%7Bn%2B1%7D,只需对初值构成的向量%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D作n次矩阵A的变换即可

而我们要求a_%7Bn%7D,那么就需作n-1次矩阵A的变换

回到题目,先选取已知递推式,再选取另一条式子a_%7Bn%2B1%7D%3D1a_%7Bn%2B1%7D%2B0a_n

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Aa_%7Bn%2B2%7D%3D5a_%7Bn%2B1%7D-6a_n%20%5C%5C%0Aa_%7Bn%2B1%7D%3D1a_%7Bn%2B1%7D%2B0%20a_n%0A%5Cend%7Bmatrix%7D%5Cright.

写成矩阵形式,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

于是可形成递推:

%5Cbegin%7Balign%7D%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E2%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%7D%20%5C%5C%0Aa_%7Bn-1%7D%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E3%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn-1%7D%20%5C%5C%0Aa_%7Bn-2%7D%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Ccdots%20%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D%0A%5Cend%7Balign%7D


%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D

下面计算%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D

对角化后,得:

%5Cbegin%7Bbmatrix%7D%0A%205%20%26%206%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%3D%0A%5Cbegin%7Bbmatrix%7D%0A2%20%20%263%20%5C%5C%0A%201%20%261%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A%202%20%26%200%5C%5C%0A%200%20%263%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A-1%20%20%26%203%5C%5C%0A%201%20%26-2%0A%5Cend%7Bbmatrix%7D

代入化简得:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_n%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A2%5E%7Bn%2B1%7D-3%5En%20%5C%5C%0A2%5En-3%5E%7Bn-1%7D%0A%5Cend%7Bbmatrix%7D

即得:%5Cboxed%7Ba_n%3D2%5En-3%5E%7Bn-1%7D%7D

如果是3阶递推又怎样呢?

比如a_%7Bn%2B3%7D%3D2a_%7Bn%2B1%7D-3a_%7Bn%2B1%7D%2B5a_n

方法是一样的,则考虑构建3阶矩阵:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3DA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

则还需选取:

a_%7Bn%2B2%7D%3D1a_%7Bn%2B2%7D%2B0a_%7Bn%2B1%7D%2B0a_n

a_%7Bn%2B1%7D%3D0a_%7Bn%2B2%7D%2B1a_%7Bn%2B1%7D%2B0a_n

由①②③,写成矩阵形式,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%202%20%26%20-3%20%26%205%5C%5C%0A1%20%20%26%200%20%260%20%5C%5C%0A0%20%20%26%201%20%260%0A%5Cend%7Bbmatrix%7D%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

递推即得:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%202%20%26%20-3%20%26%205%5C%5C%0A1%20%20%26%200%20%260%20%5C%5C%0A0%20%20%26%201%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B3%7D%20%5C%5C%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D

后面就也是对角化处理了

不过求特征值时,特征多项式的次数跟矩阵的阶数是对应的,因此上述矩阵特征多项式就是3次方程。而上面的系数是随便选取,因此解析解理论可求,只是可能不平凡。这也是出题时最多只出到二阶线性递推的主要原因。

推广到任意阶线性递推

a_%7Bn%2Bk%7D%20%3DC_1a_%7Bn%2Bk-1%7D%2BC_2a_%7Bn%2Bk-2%7D%2B...%2BC_ka_n

其中C_1%2CC_2%2C...%2CC_k表系数

考虑构建n阶矩阵:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk%7D%20%5C%5C%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0Aa_%7Bn%2Bk-2%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

则还需选取:

%5Cbegin%7Balign%7D%0A%26a_%7Bn%2Bk-1%7D%3D0a_%7Bn%2Bk%7D%2B1a_%7Bn%2Bk-1%7D%2B...%2B0a_n%5C%5C%0A%26a_%7Bn%2Bk-2%7D%3D0a_%7Bn%2Bk%7D%2B0a_%7Bn%2Bk-1%7D%2B1a_%7Bn%2Bk-2%7D%2B...%2B0a_n%5C%5C%0A%26...%5C%5C%0A%26a_%7Bn%2B1%7D%3D0a_%7Bn%2Bk%7D%2Ba_%7Bn%2Bk-1%7D%2B...%2B1a_%7Bn%2B1%7D%2B0a_n%0A%5Cend%7Balign%7D

写成矩阵形式,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk%7D%20%5C%5C%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%20C_1%20%26C_2%20%20%26%20...%20%26C_k%20%5C%5C%0A1%20%20%26%200%20%26%20..%20%26%200%5C%5C%0A%20...%20%26%20...%20%26%20...%20%26%200%5C%5C%0A%200%20%26%20...%20%26%201%20%260%0A%5Cend%7Bbmatrix%7D%0A%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0Aa_%7Bn%2Bk-2%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

观察系数矩阵可知,其有如下特点:

第一行的数字即递推式中对应的由a_%7Bn%2Bk-1%7Da_%7Bn%7D的系数

从第二行开始,从左往右依次写1,其余写0。也即从第1列第2行起,沿"左上--右下"走向处数字为1,其余为0

举个例子当练习

a_%7Bn%2B4%7D%3D3a_%7Bn%2B3%7D%2B2a_%7Bn%2B2%7D-5a_%7Bn%2B1%7D-2a_n

对应矩阵形式递推,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B4%7D%20%5C%5C%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%203%20%26%202%20%26%20-5%20%26%20-2%5C%5C%0A%7B%5Ccolor%7BBlue%7D%20%7B1%7D%7D%20%20%20%260%20%20%26%200%20%260%20%5C%5C%0A%200%20%26%20%7B%5Ccolor%7BBlue%7D%20%7B1%7D%7D%20%26%200%20%26%200%5C%5C%0A0%20%20%26%20%200%26%20%7B%5Ccolor%7BBlue%7D%20%7B1%7D%7D%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D



有了以上背景,我们便可以从更高观点来证明a_%7Bn%2B2%7D%3Da_%7Bn%2B1%7D-a_%7Bn%7D%5CRightarrow%20T%3D6这个奇葩式子了

对应矩阵形式递推,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

递推得:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D

下面求解%0A%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D

求得矩阵特征根为一对共轭复数:

%5Clambda%20_%7B1%2C2%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20i

ps:特征值为复数则对应伸缩+旋转(模长对应伸缩,辐角对应旋转)矩阵运算在复数域成立已有严格证明,这里就先不作拓展了

那么对角化后,则有:

%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%0A%3DS%5Ccdot%20J%5Ccdot%20S%5E%7B-1%7D

其中J%3D%5Cbegin%7Bbmatrix%7D%0A%20%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20i%20%26%200%5C%5C%0A0%20%20%26%20%20%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20i%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0Ae%5E%7B%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D%20%20%26%200%5C%5C%0A0%20%20%26e%5E%7B-%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D%0A%5Cend%7Bbmatrix%7D

于是有J%5E6%0A%3D%5Cbegin%7Bbmatrix%7D%0A(e%5E%7B%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D)%5E6%20%20%26%200%5C%5C%0A0%20%20%26(e%5E%7B-%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D)%5E6%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%201%20%26%200%5C%5C%0A0%20%20%261%0A%5Cend%7Bbmatrix%7D

说明对向量%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D作6次J的变换后回到原位,因此周期为6

到此悟性好的读者脑海中已经掀起了滔天巨浪!

这正是特殊的辐角具有旋转周期性造成的!!!

原来这令人头大的结论背后有如此绝妙的背景!

这便是数学!纯真美妙的数学!不被应试名利铜臭玷污的数学!

总结

这期专栏主要讲解了用矩阵方法求解整式线性递推数列,顺带发掘了一些奇葩结论背后美妙的命题背景。

其中矩阵次方的处理采用了矩阵对角化的方法。而这种方法对于二阶矩阵而言需要满足特征根为2不等实根或一对共轭复根时使用。换而言之,还存在特征根为重根的情况,这种情况矩阵不可对角化。由于个人尚未了解充分,因此先把尚未解决的这种特殊情况先遗留与此。后续掌握后再补充讨论。

整式线性递推写完也花了不少篇幅了,因此一阶分式线性递推就放后续再讲了~

另外,感觉缺少例题的讲解,有空翻翻好像还没丢的一轮书找找例题附上[滑稽]


几类特殊递推数列的矩阵算法(前篇)的评论 (共 条)

分享到微博请遵守国家法律