221122新版cytoviva 超光谱纳米显微镜操作规程与技术资料
作者:部分来源于菜鸟博士_悬空七少 CytoViva 超光谱纳米显微镜-好牛耶
CytoViva 超光谱操作手册




Scale bar 标注方法:
尺度的定义:

10倍镜头下:110对应每μm,x40倍镜头下,乘以4为440,。。。


定义所需要的尺度:如1μm 或XX

其他资料:
我校公共实验平台Cytoviva超光谱纳米显微镜的使用培训通知sysysbglc.cpu.edu.cn/3a/4d/c9704a145997/page.htm
Cytoviva:CytoViva纳米高光谱显微成像系统应用介绍-标记植物组织中的纳米材料

Label-Free Liposome & ExosomeHyperspectral Microscopy
纳米尺度囊泡(如脂质体和外泌体)作为药物传递载体的研究取得了显著进展,使其在FDA的临床试验数量不断增加。大多数早期临床试验工作都集中在携带药物或基因治疗负载的工程脂质体上。然而,天然外泌体载体正在迅速取得进展。
Research of nano-scale vesicles such as liposomes and exosomes as drug delivery vectors has progressed significantly leading to increasing numbers of FDA clinical trials. Most of these early clinical trial efforts have focused on engineered liposomes carrying a drug or gene therapy load. However, rapid progress is now being made with natural exosomal vectors.
关键挑战仍然是了解这些纳米级载体靶向肿瘤细胞的功效,这通常通过内吞事件或直接细胞膜融合发生,最终将药物释放到细胞中。由于囊泡的荧光标记会干扰其任务,因此需要一种无标记的体外成像方法来确认各种囊泡-药物负载组合的这种功效。成像方法还应有助于确定囊泡样品中的适当药物负荷,并确认其与活细胞的相互作用和摄取。
Key challenges remain in understanding the efficacy of tumor cell targeting with these nanoscale carriers, which most often happens through endocytic events or direct cell membrane fusion for eventual release of the drugs to the cell. Since fluorescent labeling of the vesicle can interfere with its task, a label-free, in-vitro imaging method is required to confirm this efficacy with a variety of vesicle-drug load combinations. The imaging method should also help
determine proper drug load across the vesicle sample and confirm its interaction and uptake with live cells.
CytoViva 的增强型暗场高光谱显微镜在帮助研究人员了解囊泡载体靶向细胞以及装载药物的定时释放方面非常有效。使用这种无标签成像技术,可以:
CytoViva's Enhanced Darkfield Hyperspectral Microscope is proving to be highly effective in helping researchers understand both the targeting of vesicle carriers to cells as well as the timed release of their drug cargo. With this label free imaging technique it is possible to:
• 在体外和溶液中成像<100 nm 的无标记外泌体或脂质体
• 区分具有不同有效载荷的囊泡和空囊泡
• 使用光谱图对囊泡药物构建体进行无标记细胞运输,以识别与活细胞或固定细胞的相互作用
• Image label-free exosomes and liposomes < 100 nm in-vitro and in solution• Distinguish vesicles with differing payloads as well as empty vesicles• Conduct label-free cell trafficking of the vesicle-drug construct with spectral mapping to identify interaction with live or fixed cells

上面显示了用于此应用的 CytoViva 系统的具体示例。在此示例中,将前列腺癌特异性肽添加到负载多柔比星的脂质体中。借助 CytoViva 增强型暗场高光谱显微镜系统,研究人员能够创建负载阿霉素的脂质体(图 2)独有的参考光谱库(图 1)。请注意,图 1 中所示的参考光谱在 575nm 处有一个非常明显的峰,这与阿霉素的光谱特性一致。图 3 显示了已与脂质体构建体一起孵育的无标记肿瘤细胞。图 4 中的红色像素展示了参考光谱的光谱映射,确认了脂质体构建体在肿瘤细胞内的存在和位置。
A specific example of the CytoViva system being used for this application is shown above. In this example, a prostate cancer-specific peptide is added to a doxorubicin-loaded liposome. With the CytoViva Enhanced Darkfield Hyperspectral Microscope system, the researcher is able to create a reference spectral library (figure 1) unique to the doxorubicin-loaded liposome (figure 2). Note that the reference spectra illustrated in figure 1 has a very distinct peak at ~575nm that is consistent with the spectral properties of doxorubicin. Figure 3 shows a label-free tumor cell that has been incubated with the liposome construct. The red pixels in figure 4 demonstrate the spectral mapping of the reference spectrum confirming the presence and location of the liposomal construct within the tumor cell.
CytoViva 系统的一个主要优点是它不需要荧光标记或改变细胞及脂质体的结构即可有效的成像和分析。此外,这些样本可以使用 SynVivo for CytoViva 活细胞微流控系统进行活细胞成像。使用该系统,纳米药物递送结构可以添加到活细胞培养物中,并且可以随着时间的推移捕获图像,记录动态相互作用。该系统还可用作“模拟体内”系统,用于观察生物环境中的纳米粒子命运。
A key benefit of the CytoViva system is that it does not require fluorescent labeling or other alteration of the cell structure or the liposomes for effective imaging and analysis. Additionally, these samples can be imaged as live cells using the SynVivo for CytoViva live-cell microfluidics chamber. With this system, the nano-drug delivery construct can be added to the live cell culture and images can be captured over time, recording the dynamic interaction. This system can also be used as a "simulated in-vivo" system for observing nanoparticle fate in the biological environment.
要了解高光谱显微镜如何促进您的纳米颗粒研究工作,请通过china@cytoviva.com联系我们,或关注公众号Cytoviva思拓唯沃科学技术。私信我,我们在全球纳米研究实验室提供纳米高光谱显微成像技术方面拥有十五年的经验。我们将很高兴地讨论您的研究,并安排在我们的实验室或现有客户实验平台对您的样品进行图像测试。
纳米显微镜其他笔记:
纳米显微镜描述:
Dark field optical images were obtained with a CytoViva® ultra resolution imaging system, composed by a special arrangement mounted on an Olympus BX51 microscope.
HSI measurements were performed using Cytoviva hyperspectral imaging system equipped with Cytoviva™ high resolution dark field condenser (oil immersion).
The CytoViva (CytoViva Inc., Auburn, AL, USA) technology in combination with dark field microscopy was used to image GNP distribution within cells. 应用Cytoviva(Cytoviva Inc.,Auburn,AL,USA)技术与暗场显微镜技术相结合,对细胞内国产总值的分布进行了观察。
(CytoViva, Inc., Auburn, AL).
The CytoViva hyperspectral imaging microscopy system (CytoViva, Inc., Auburn, AL, USA) mounted on an Olympus BX43 darkfield microscope (Olympus Corporation, Tokyo, Japan) was used to analyze the internalization of the different gold NPs by BEAS-2B cells.
CytoViva高光谱成像显微镜系统(CytoViva,Inc.,阿本,美国)安装在奥林巴斯BX43暗场显微镜(奥林巴斯公司,东京,日本)上,分析BEAS-2B细胞对不同金NPs的内化。