欢迎光临散文网 会员登陆 & 注册

学不明白的数学分析(五十九)

2023-02-24 19:20 作者:不能吃的大鱼  | 我要投稿

好耶!含参变量反常积分的基本内容都已经介绍完啦!

从上一篇的内容来看,其实正如我所说,函数项级数与含参变量积分(尤其是反常积分)之间有着十分紧密的联系,所以理解起来并不困难。

而与函数项级数一样,在介绍完含参变量反常积分的基本内容之后,我们就要着重来对其应用做一些简单的介绍。在函数项级数部分,我们最后是介绍了比较重要的一类级数——幂级数。而在含参变量反常积分部分,我们则要着重介绍两类特殊积分——Euler第一型积分(Β函数)和Euler第二型积分(Γ函数)。


Chapter  Eighteen  含参变量积分

18.4  Γ函数和Β函数

这两类函数的提出,并非突发奇想,而是在一定的数学问题之上引申而得来的。(比如非正整数的阶乘问题)具体的历史细节目前我没有找到太多比较详尽的内容,不过对此有兴趣的小伙伴倒是可以去阅读一些数学史相关的著作,了解其中的数学故事,便于理解这一部分内容。

我们先来讨论Euler第二型积分,它的表达式如下:

%5CGamma%20(s)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt

这是一个含参变量反常积分,那么我们首先就要问,它是否收敛,或者是一致收敛的?

考虑到被积函数的形式,我们将其分割成:

%5Cint_0%5E%7B1%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%EF%BC%8C%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt

这两个积分来讨论。

首先,如果s的范围是一不含0的正有限闭区间%5Ba%2Cb%5D,则这两个积分一个是含参变量常义积分,一个是含参变量无穷积分,都是我们直接讨论过的内容,因此比较好判断。

我们能够想到:

0%5Cle%20t%5E%7Bb-1%7D%5Cle%20t%5E%7Bs-1%7D%20%5Cle%20t%5E%7Ba-1%7D%5Cquad%20(0%5Cle%20t%5Cle%201)

t%5E%7Bs-1%7D%5Cle%20t%5E%7Bb-1%7D%20%5Cquad(t%5Cge%201)

因此,我们能够知道:

%5Cint_0%5E%7B1%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%20%5Cle%20%5Cint_0%5E%7B1%7D%20t%5E%7Ba-1%7De%5E%7B-t%7D%20%5Ctext%20dt

%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%5Cle%20%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bb-1%7De%5E%7B-t%7D%20%5Ctext%20dt

于是,由Weierstrass控制判别法,%5CGamma%20(s)在任意不含0的正有限闭区间上一致收敛,即Euler第一型积分在上(0%2C%2B%E2%88%9E)内闭一致收敛,从而我们能够知道这一积分在(0%2C%2B%E2%88%9E)上连续。

当s=0时,有:

%5Cint_0%5E%7B1%7D%20t%5E%7B-1%7De%5E%7B-t%7D%20%5Ctext%20dt%3D%5Cint_1%5E%7B%2B%E2%88%9E%7D%20x%5E%7B-1%7De%5E%7B-%5Cfrac%7B1%7D%7Bx%7D%20%7D%20%5Ctext%20dx

由于:

%5Clim_%7Bx%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bx%5E%7B-1%7De%5E%7B-%5Cfrac%7B1%7D%7Bx%7D%7D%20%7D%7Bx%5E%7B-1%7D%7D%20%20%3D1%EF%BC%9E0

则由比较判别法,此时%5CGamma%20(s)发散;进而仍由比较判别法,当s<0时,由于:

%5Cint_0%5E%7B1%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%20%5Cge%20%5Cint_0%5E%7B1%7D%20t%5E%7B-1%7De%5E%7B-t%7D%20%5Ctext%20dt%20

于是发散。

至此,我们知道,%5CGamma%20(s)(0%2C%2B%E2%88%9E)上内闭一致收敛,从而连续;在(-%E2%88%9E%2C0%5D上发散。

有了以上的结果,我们就能对%5CGamma%20(s)的分析性质做以研究。比如说:

Euler第二型积分可微,且:

%5CGamma%20%5E%7B(n)%7D(s)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7Dt%5E%7Bs-1%7De%5E%7B-t%7D(%5Cln%20t)%5En%20%5Ctext%20dt

证明可以采用数学归纳法的思想,只需要对第一阶导数证明即可。

因为被积函数与其偏导数显然都是连续函数,因此根据上一篇专栏中介绍的内容,只需要证明:

F(s)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%5Cln%20t%5Ctext%20dt

一致收敛即可。思路与上面一致。

按道理,我们接下来应该研究一下这一积分的可积性质,不过由于其实实际上使用的比较少,所以我们不予讨论。

我们接下来尝试,对于Euler第二型积分而言,还能得到什么样的结论。

通过计算,我们得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%26%3D-%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7D%5Ctext%20d(e%5E%7B-t%7D)%5C%5C%0A%26%3D-%5Cbigg(t%5E%7Bs-1%7De%5E%7B-t%7D%5Cbigg%7C_0%5E%7B%2B%E2%88%9E%7D-%5Cint_0%5E%7B%2B%E2%88%9E%7D%20e%5E%7B-t%7D%20%5Ctext%20d(t%5E%7Bs-1%7D)%5Cbigg)%5C%5C%0A%26%3D(s-1)%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-2%7De%5E%7B-t%7D%20%5Ctext%20dt%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

即:%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

%5CGamma%20(s%2B1)%3Ds%5CGamma%20(s)

(这里第二步实际上需证明等号右侧前一项一致收敛到0,但是因为过于简单,所以这里略去了。)

如果令s=n,为正整数,不难发现,这与阶乘的公式高度一致。如果我们能证明:

%5CGamma%20(1)%3D1

那么,此时这就是阶乘的表达式,从而我们可以说,%5CGamma%20(s)实际上是对于任意正实数的阶乘公式。

直接计算,不难得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5CGamma%20(1)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20e%5E%7B-t%7D%5Ctext%20dt%3D(1-e%5E%7B-t%7D)%5Cbigg%7C_0%5E%7B%2B%E2%88%9E%7D%3D1%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

这证明我们的想法是正确的。

而关于这一积分,Bohr和Mollerup在1992年首先发现,配合最后一个条件:

%5Cln%20%5CGamma%20(s)(0%2C%2B%E2%88%9E)上是一个凸函数。

(命题1)

可以将函数在(0%2C%2B%E2%88%9E)上唯一确定成Euler第二型积分。也就是说:

设函数f(0%2C%2B%E2%88%9E)上满足:

(1)

%5Cforall%20x%EF%BC%9E0%EF%BC%8Cf(x)%EF%BC%9E0%EF%BC%8Cf(1)%3D1

(2)

%5Cforall%20x%EF%BC%9E0%EF%BC%8Cf(x%2B1)%3Dxf(x)

(3)

%5Cln%20f(x)(0%2C%2B%E2%88%9E)上是一个凸函数。

则有:

f(x)%5Cequiv%20%5CGamma%20(x)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bx-1%7De%5E%7B-t%7D%20%5Ctext%20dt

我们只要能够证明,满足着三个条件的函数是唯一的,因为我们已将找到了Euler第二型积分作为满足这三个条件的函数,因此一定就有结论成立。

考虑条件(2),只要f(x)(0%2C1)上唯一确定,则函数就在(0%2C%2B%E2%88%9E)上唯一确定。而由条件(3),我们能够得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cfrac%7B%5Cln%20f(n)-%5Cln%20f(n-1)%7D%7Bn-(n-1)%7D%20%26%5Cle%20%5Cfrac%7B%5Cln%20f(n%2Bx)-%5Cln%20f(n)%7D%7B(n%2Bx)-n%7D%20%5C%5C%0A%26%5Cle%20%5Cfrac%7B%5Cln%20f(n%2B1)-%5Cln%20f(n)%7D%7B(n%2B1)-n%7D%5C%5C%20%0A%26%5Cle%20%5Cfrac%7B%5Cln%20f(n%2B1)-%5Cln%20f(n%2Bx)%7D%7B(n%2B1)-(n%2Bx)%7D%20%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

由条件(1)(2),显然:

f(n)%3D(n-1)!

则:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%26x%5Cln%20(n-1)%5Cle%20%5Cln%20f(n%2Bx)-%5Cln%20(n-1)!%5Cle%20x%5Cln%20n%5C%5C%0A%5CLeftrightarrow%20%26x%5Cln%20(n-1)%2B%5Cln%20(n-1)!%5Cle%20%5Cln%20f(n%2Bx)%5Cle%20x%5Cln%20n%2B%5Cln%20(n-1)!%5C%5C%0A%5CLeftrightarrow%20%26(n-1)%5Ex(n-1)!%5Cle%20f(n%2Bx)%5Cle%20n%5Ex(n-1)!%5C%5C%0A%5CLeftrightarrow%20%26(n-1)%5Ex(n-1)!%5Cle%20f(x)%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%5Cle%20n%5Ex(n-1)!%5C%5C%0A%5CLeftrightarrow%20%26%5Cfrac%7B(n-1)%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%20%5Cle%20f(x)%5Cle%20%5Cfrac%7Bn%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%5C%5C%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

又因为:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%20%5Cfrac%7B%5Cfrac%7Bn%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%7D%7B%5Cfrac%7B(n-1)%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%7D%20%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cbigg(%5Cfrac%7Bn%7D%7Bn-1%7D%5Cbigg)%5Ex%20%3D1%20

(这是关于x一致收敛的,证明也因较为简单而略去。)

于是:

f(x)%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%20%5Cfrac%7B(n-1)%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%20%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5Exn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bx)%7D%20%20

对于任意的x,由极限的唯一性,得到f(x)也是唯一的。

进而我们得到:

%5CGamma%20(s)%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%20%5Cfrac%7B(n-1)%5Es(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bs)%7D%20%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5Es%20n!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs)%7D%20%20

接下来我们来讨论Euler第一型积分:

B(p%2Cq)%3D%5Cint_0%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt

这个积分形式上比较复杂,别的不说,积分内含有两个参数,因此这一积分的讨论就要多一个角度。另外,在参数取到一定的范围时,这一积分就是瑕积分,讨论起来也不是很容易。

首先,p,q≥1时,这是含参变量常义积分;当p,q<1时,我们将积分拆解为:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%EF%BC%8C%5Cint_%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt

而:

%5Cint_%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%3D%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bq-1%7D%20(1-t)%5E%7Bp-1%7D%20%5Ctext%20dt

所以只需要讨论前者即可。

由于p=0时,有:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20%5Ctext%20dt

因而发散,所以p≤0时,就有:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%5Cge%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20%5Ctext%20dt

发散。

当0<p<1时,做变换:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%3D%5Cint_%7B2%7D%5E%7B%2B%E2%88%9E%7D%20%20x%5E%7B-p-q%7D%20(x-1)%5E%7Bq-1%7D%20%5Ctext%20dx

由于:

%5Clim_%7Bx%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bx%5E%7B-p-q%7D(x-1)%5E%7Bq-1%7D%7D%7Bx%5E%7B-p-1%7D%7D%3D%20%20%5Clim_%7Bx%5Cto%2B%E2%88%9E%7D%20%5Cbigg(%5Cfrac%7Bx%7D%7Bx-1%7D%20%5Cbigg)%5E%7B1-q%7D%3D1

(还是一致收敛,还是略去。)

这样,我们就得到此时B(p%2Cq)在p,q>0时收敛,且关于任何一个参数都是在%5B0%2C%2B%E2%88%9E)上内闭一致收敛。并且从我们的讨论过程当中,我们可以敏锐地捕捉到一个点:

B(p%2Cq)%3DB(q%2Cp)%5Cquad(p%2Cq%EF%BC%9E0)

另外,我们还能通过直接计算得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%26%3D%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20t%5E%7B-p-q%7D%20(t-1)%5E%7Bq-1%7D%20%5Ctext%20dt%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7Bq%7D%20%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20t%5E%7B-p-q%7D%20%5Ctext%20d((t-1)%5Eq)%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7Bq%7D%20%20%5Cbigg(t%5E%7B-p-q%7D%20(t-1)%5E%7Bq%7D%20%5Cbigg%7C_1%5E%7B%2B%E2%88%9E%7D-%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20(t-1)%5E%7Bq%7D%20%5Ctext%20d(t%5E%7B-p-q%7D)%5Cbigg)%5C%5C%0A%26%3D%5Cfrac%7Bp%2Bq%7D%7Bq%7D%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20t%5E%7B-p-(q%2B1)%7D%20(t-1)%5E%7B(q%2B1)-1%7D%20%5Ctext%20dt%20%5C%5C%0A%26%3D%5Cfrac%7Bp%2Bq%7D%7Bq%7D%20%5Cint_0%5E%7B1%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq%7D%20%5Ctext%20dt%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

即:

B(p%2Cq%2B1)%3D%5Cfrac%7Bq%7D%7Bp%2Bq%7DB(p%2Cq)%20

也可以写作:

B(p%2B1%2Cq)%3D%5Cfrac%7Bp%7D%7Bp%2Bq%7DB(p%2Cq)%20

最后,我们指出,这两类积分同为Euler积分,本质上是有一定的联系的:

%5Cforall%20p%2Cq%EF%BC%9E0%EF%BC%8CB(p%2Cq)%3D%5Cfrac%7B%5CGamma%20(p)%5CGamma%20(q)%7D%7B%5CGamma%20(p%2Bq)%7D%20

我们这里列出几种证明,其中比较能够揭示本质的,是这种:

Γ函数与Β函数之间的关系证明(1)

而参考教材上则巧妙地利用了%5CGamma%20(s)的三条性质及其唯一确定性,证明如下:

先设:

f(p)%3D%5Cfrac%7B%5CGamma%20(p%2Bq)B(p%2Cq)%7D%7B%5CGamma%20(q)%7D%20

然后:

Γ函数与Β函数之间的关系证明(2)

这里还给出了一些性质,其中有些我们已经指出过了。

最后po个链接,里面的证明十分的硬核。(乐)

Euler积分—B函数与Γ函数 - BriChen的文章 - 知乎 https://zhuanlan.zhihu.com/p/433589729

利用两类Euler积分之间的联系,我们来进一步给出它们的一些性质。

从第一型Euler积分的形式来看,忽略指数项的差异,被积函数本身是相当对称的,我们可以考虑一种换元:

t%3D%5Cfrac%7B1%7D%7B2%7D%20-%5Cfrac%7B1%7D%7B2%7D%20x

于是,就有:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%26%3D%5Cint_%7B-1%7D%5E1%20(%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7D%20x)%5E%7Bp-1%7D(%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7Dx)%5E%7Bq-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-p-q%2B2%7D%5Cint_%7B-1%7D%5E1%20(1-x)%5E%7Bp-1%7D(1%2Bx)%5E%7Bq-1%7D%5Ctext%20dx%5C%5C%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

此时,若令p=q=s,就能得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E1%20t%5E%7Bs-1%7D%20(1-t)%5E%7Bs-1%7D%20%5Ctext%20dt%26%3D2%5E%7B-2s%2B2%7D%5Cint_%7B-1%7D%5E1%20(1-x)%5E%7Bs-1%7D(1%2Bx)%5E%7Bs-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-2s%2B2%7D%5Cint_%7B-1%7D%5E1%20(1-x%5E2)%5E%7Bs-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-2s%2B2%7D%5Cbigg(%5Cint_%7B-1%7D%5E0%2B%5Cint_0%5E1%20%5Cbigg)(1-x%5E2)%5E%7Bs-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-2s%2B2%7D%5Cint_%7B0%7D%5E1%20%5Cfrac%7B1%7D%7B2%7D%20y%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%20(1-y)%5E%7Bs-1%7D%5Ctext%20dy%5C%5C%0A%26%3D2%5E%7B-2s%2B1%7D%5Cint_%7B0%7D%5E1%20y%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D(1-y)%5E%7Bs-1%7D%5Ctext%20dy%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

即:

B(s%2Cs)%3D2%5E%7B-2s%2B1%7DB(%5Cfrac%7B1%7D%7B2%7D%2Cs)%20

将其改写为第二类Euler积分的形式,就是:

%5Cfrac%7B%5CGamma%20(s)%5CGamma%20(s)%7D%7B%5CGamma(2s)%7D%20%3D2%5E%7B-2s%2B1%7D%5Cfrac%7B%5CGamma%20(s)%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%7D%7B%5CGamma(s%2B%5Cfrac%7B1%7D%7B2%7D)%7D%20

我们现在来求%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%20。我们使用一种比较巧妙的方式,这还是要利用到两类Euler积分之间的联系。

在第一类Euler积分当中,令p=s,q=1-s,就有:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0AB(s%2C1-s)%26%3D%5Cint_0%5E1%20t%5E%7Bs-1%7D%20(1-t)%5E%7B-s%7D%20%5Ctext%20dt%5C%5C%0A%26%3D%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7B-1%7D%20(t-1)%5E%7B-s%7D%20%5Ctext%20dt%5C%5C%0A%26%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20%5Cfrac%7Bt%5E%7B-s%7D%7D%7Bt%2B1%7D%20%5Ctext%20dt%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

这一积分目前我们解决不了,需要等到我们介绍过Fourier级数过后,才能够对这一结果给出证明。但是由于目前的需要,我们直接给出结果:

B(s%2C1-s)%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin%20(1-s)%5Cpi%7D%20

当我们取s=0.5时,就有:

B(%5Cfrac%7B1%7D%7B2%7D%2C%20%5Cfrac%7B1%7D%7B2%7D%20)%3D%5Cfrac%7B%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%20%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%7D%7B%5CGamma%20(1)%7D%20%3D%5CGamma(%5Cfrac%7B1%7D%7B2%7D)%5E2%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%7D%20%3D%5Cpi

于是:

%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%3D%5Csqrt%7B%5Cpi%20%7D%20%20

于是,我们就得到了两个很有用的结果:

%5CGamma%20(2s)%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5CGamma%20(s)%5CGamma%20(s%2B%5Cfrac%7B1%7D%7B2%7D%20)

(倍元公式)

Gamma函数倍乘公式(勒让德倍乘公式)的推广 - PyroTechnics的文章 - 知乎 https://zhuanlan.zhihu.com/p/435464646

%5CGamma%20(s)%5CGamma%20(1-s)%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin(1-s)%5Cpi%7D%20%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin%20s%5Cpi%7D%20

(余元公式)

余元公式的几种证明方法 - fell的文章 - 知乎 https://zhuanlan.zhihu.com/p/342206090

作为应用演示,我们来解决一个问题:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%20%5Cfrac%7Bi%7D%7Bi%2B1%2Bs%7D%20%20%3D%EF%BC%9F%5Cquad(0%EF%BC%9Cs%EF%BC%9C1)

我们将倍元公式用第二类Euler积分的极限定义改写为:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7B2s%7Dn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2B2s)%7D%26%3D%20%20%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7Bs%7Dn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs%2B%5Cfrac%7B1%7D%7B2%7D)%7D%0A%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7Bs%2B%5Cfrac%7B1%7D%7B2%7D%7Dn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs)%7D%5C%5C%0A%26%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7B2s%2B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs%2B%5Cfrac%7B1%7D%7B2%7D)%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs)%7D%5C%5C%0A%26%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B2s%2B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(2i%2B2s%2B1)%5Cprod_%7Bi%3D0%7D%5En%20(2i%2B2s)%7D%20%5C%5C%0A%26%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B2s%2B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B%5Cprod_%7Bi%3D0%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%20%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

左右两边约去相同的项,化简得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7Dn!%7D%7B%5Cprod_%7Bi%3Dn%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%20%20%26%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D(n!)%5E2%5Cdisplaystyle%5Cfrac%7B(2n)!%7D%7Bn!%7D%20%7D%7B(2n)!%5Cprod_%7Bi%3Dn%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%20%5C%5C%0A%26%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D(n!)%5E2%5Cprod_%7Bi%3Dn%2B1%7D%5E%7B2n%7D%20i%7D%7B(2n)!(n%2B2s)%5Cprod_%7Bi%3Dn%2B1%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%5C%5C%0A%26%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B(2n)!(n%2B2s)%7D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%5Cfrac%7Bi%7D%7Bi%2B1%2B2s%7D%20%5C%5C%20%20%20%20%20%0A%26%3D%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%20%7D%7B2%5E%7B2s-1%7D%7D%20%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

利用Wallis公式,等号右侧第一项满足:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B(2n)!(n%2B2s)%7D%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B(2n)!%7D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%7D%7Bn%2B2s%7D%20%20%3D4%5Csqrt%7B%5Cpi%7D%20

于是就有:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%20%5Cfrac%7Bi%7D%7Bi%2B1%2B2s%7D%20%20%3D2%5E%7B-2s%2B3%7D

即:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%20%5Cfrac%7Bi%7D%7Bi%2B1%2Bs%7D%20%20%3D2%5E%7B-s%2B3%7D

最后,我们来推广我们曾经介绍过的Stirling公式:


思考:

  1. 证明命题1,即%5Cln%5CGamma(s)(0%2C%2B%E2%88%9E)上的凸函数;

    (利用Hölder不等式)

  2. 计算积分:

    %5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%5Ccos%20%5E%5Calpha%20x%5Csin%20%5E%5Cbeta%20x%5Ctext%20dx

  3. 计算积分:

    %5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%5Ctan%20%5E%5Calpha%20x%5Ctext%20dx

  4. 证明:%5Cln%20B(s)(0%2C%2B%E2%88%9E)上关于p的凸函数;

  5. 证明:

    %5Cint_0%5E1%5Cln%20%5CGamma%20(s)%5Ctext%20ds%3D%5Cln%20%5Csqrt%7B2%5Cpi%7D%20

  6. 证明:

    %5Cint_0%5E1%20%5Csin%20%5Cpi%20s%5Cln%20%5CGamma%20(s)%5Ctext%20ds%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20(%5Cln%20%5Cfrac%7B%5Cpi%7D%7B2%7D%2B1)%20


最後の最後に、ありがとうございました!

学不明白的数学分析(五十九)的评论 (共 条)

分享到微博请遵守国家法律