实数的阶乘——欧拉积分:Beta、Gamma函数

欧拉积分是跟一个序列插值问题密切相关的:即阶乘序列
所谓序列插值,就是将通项公式的定义从整数集延拓到实数集
1728年,哥德巴赫在考虑序列插值的问题,当他开始处理阶乘时,被这玩意给难住了,

可以发现似乎确实存在一条光滑的曲线能将阶乘对应的点连接起来,但是哥德巴赫无法解决阶乘这个问题,于是写信给了尼古拉一世·伯努利(NikolausI Bernoulli)和他的弟弟丹尼尔(Daniel Bernoulli),而当时欧拉(Leonhard Euler)他俩在一块,因此他也得知了这个问题,最后他在1729年完美地解决了这个问题
这便是今天要说到的欧拉积分了:(勒让德的提法)
第一个积分也称为beta函数,第二个特别特别常用的积分也称为Gamma函数
(ps:本文中的beta,Gamma函数的变量都是实数,但是需要注意的是它们更广泛的应用都一定会涉及到变量为复数的情况)

欧拉第一类积分
这个积分下限是0,因此收敛的充要条件是p>0,类似地,上限是1收敛的充要条件是q>0,
所以beta函数是在p,q都>0时才有定义,
在beta函数的积分中作变量代换
,可得其对成性:
又作代换
,可得它另一种积分表达式:
又又作代换
,又得到了:
根据第二个积分表达式,利用分部积分法可得一下递推公式
当n为整数时,由递推公式,有
令,可得高斯公式(Gauss Formula):
我们来验证当是非负整数时它其实就是阶乘:
首先有
又有(α>0):
因此
而当把变量换成正实数时,仍然满足递推性质,所以它作为阶乘的延拓是良好定义的

第二类欧拉积分
在下面的公式中作代换,根据beta函数的递推公式,有
以我们熟知的蓝色部分当时一致收敛到
,而最下面的乘积则收敛到
,又不难验证该函数到Gamma函数,于是
因此,有以下性质
在积分中作代换,有Gamma函数的另一积分表达式为:
又作代换,又有积分表式为:
也许有的人看到积分中减了个1会有些疑惑,为什么不直接定义
呢?这样既好看了些,还能在s是整数时直接有
我说如果这样想的话那你就格局小了(被打),其实不难发现上面这个积分右边仅仅在s>-1时才收敛,数学家们不太喜欢这样的收敛域,而正好-1这种用法十九世纪末期在法国十分流行,于是当时由勒让德(Legendre)介绍了Gamma(s)=(s-1)!,这样收敛范围变成了s>0,这样的收敛域既省事又挺美观
beta函数与Gamma之间函数的联系
设,通过变量代换
,有以下等式:
令,则有
用上式和beta函数的第二积分表式,有
可以互换积分次序是由于时上述积分处处收敛

本期就先到此结束了,稍微氵了点hhh,下一期就是有关Gamma函数的几个公式了