欢迎光临散文网 会员登陆 & 注册

spq法的简单运用(三)

2023-08-07 19:39 作者:梦违Changer  | 我要投稿

例三:a%E3%80%81b%E3%80%81c%5Cin%20R%5E%2B%20%E4%B8%94a%2Bb%2Bc%3D3,求证:%5Cfrac%7B1%7D%7Ba%5E2%20%7D%2B%20%5Cfrac%7B1%7D%7Bb%5E2%20%7D%2B%5Cfrac%7B1%7D%7Bc%5E2%20%7D%5Cgeq%20a%5E2%2Bb%5E2%2Bc%5E2

证明:原不等式%5Ciff%20%5Cfrac%7B%5Csum%5Cnolimits_%7Bcyc%7D%5E%7B%7Da%5E2%20b%5E2%20%20%20%7D%7Ba%5E2%20b%5E2%20c%5E2%20%7D%20%5Cgeq%20%5Csum_%7Bcyc%7D%5E%7B%7D%20a%5E2

%5Ciff%20%5Csum_%7Bcyc%7D%5E%7B%7D%20a%5E2%20b%5E2%20%5Cgeq(a%5E2%20b%5E2%20c%5E2)%20%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%20

3%3D%5Csum_%7Bcyc%7D%5E%7B%7Da%3Ds%E3%80%81%5Csum_%7Bcyc%7D%5E%7B%7Dab%3Dq%E3%80%81abc%3Dp

%5Ciff%20q%5E2-6p%5Cgeq%20p%5E2(9-2q)

%5Ciff%20q%5E2%2B2p%5E2%20q%5Cgeq%206p%2B9p%5E2

这个式子非常麻烦,因为p同时出现在不等号的两边,难以放缩。但更加不幸的并不是这一点,我会在下文中说明。

仿照前几题的证明方法,设法消元得到一元函数后再进行分类讨论。

q%5Cgeq%20%5Csqrt%7B3sp%7D%20%3D3%5Csqrt%7Bp%7D%20%EF%BC%8C%E7%9F%A5q%5E2%2B2p%5E2%20q%5Cgeq%209p%2B6p%5E2%5Csqrt%7Bp%7D%20%20

那么根据前几题的经验,我们只需知道使得上式恒成立的p的范围

上式%5Ciff%204p%5E3-9p%5E2%2B6p-1%5Cgeq%200%20%20

%5Ciff%20(p-1)%5E2(4p-1)%5Cgeq%200

上式对于p%5Cin%20%5B%5Cfrac%7B1%7D%7B4%7D%2C%2B%20%E2%88%9E)恒成立,从而只需讨论p%E2%88%88(0%2C%5Cfrac%7B1%7D%7B4%7D%5D%20的情况

这里我试图证明余下的情况时没有动用三次舒尔不等式,原因是解刚才的不等式时已动用两次均值消元,若想消p,会动用两次均值与一次三次舒尔不等式,只会放得更松。

于是我直接对q%5E2%2B2p%5E2%20q%5Cgeq%206p%2B9p%5E2进行解二次不等式

%5Ciff%20(9-2q)p%5E2%20%2B6p-q%5E2%5Cgeq%200

其中%5CDelta%20%3D4(9%2B9q%5E2-2q%5E3%20),函数g(q)%3D9%2B9q%5E2-2q%5E3%20的极大值为36,极小值为9

从而其图像与x轴仅有一个实交点,又g(4)%C2%B7g(5)%3D25%5Ctimes%20(-16)%EF%BC%9C0

从而g(q)%3D0的唯一实根在(4%2C5)之间,故知对q%5Cin%20(0%2C3%5D%EF%BC%8C%5CDelta%20%EF%BC%9E0

%5Ciff%20%5Cfrac%7B-3-%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D%5Cleq%20p%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D

q%5Cleq%20%5Cfrac%7Bs%5E2%20%7D%7B3%7D%20%3D3%20%5Cfrac%7B-3-%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D%EF%BC%9C0%EF%BC%9Cp是恒成立的,

我们考虑使得%5Cfrac%7B1%7D%7B4%7D%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D恒成立的q

%5Ciff%20-32q%5E3%20%2B140q%5E2%2B84q-297%5Cgeq%200%20

q%5Cin%20(-%E2%88%9E%2C-%5Cfrac%7B3%7D%7B2%7D%20%5D%5Ccup%20%5B%5Cfrac%7B11%7D%7B8%7D%20%2C%5Cfrac%7B9%7D%7B2%7D%20%5D

这说明当p%E2%88%88(0%2C%5Cfrac%7B1%7D%7B4%7D%20%5D%20%E4%B8%94q%5Cin%20%5B%5Cfrac%7B11%7D%7B8%7D%2C3%5D时原不等式成立

我们只需继续证明当p%E2%88%88(0%2C%5Cfrac%7B1%7D%7B4%7D%20%5D%20%E4%B8%94q%5Cin%20(0%2C%5Cfrac%7B11%7D%7B8%7D%5D时原不等式成立即可

其实当q%5Cin%20(0%2C%5Cfrac%7B11%7D%7B8%7D%5D%E6%97%B6p有更小的范围

我继续逼出p%5Cleq%20%5Cfrac%7Bq%5E2%7D%7B9%7D%20%3D%5Cfrac%7B121%7D%7B576%7D%20,并考虑使得%5Cfrac%7B121%7D%7B576%7D%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D恒成立的q

2q%5E3-%5Cfrac%7B731855%7D%7B82944%7Dq%5E2-%5Cfrac%7B75746%7D%7B18432%7D%20q%2B%5Cfrac%7B61105%7D%7B4096%7D%5Cleq%20%200

这里直接交给计算器,得q%5Cin%20(-%E2%88%9E%2C-1.33236%5D%5Ccup%20%5B1.24410%2C%5Cfrac%7B9%7D%7B2%0A%7D%5D%20

接下来只需证明当p%E2%88%88(0%2C%5Cfrac%7B121%7D%7B576%7D%20%5D%20%E4%B8%94q%5Cin%20(0%2C1.24410%5D时原不等式成立

可以看到,我们“成功”进一步缩小了q的范围,我断定再进行有限次重复的操作,能最终证明原不等式。

但是,真的有小可爱会这样算下去吗?

于是,这种思路pass,我们换一条路。

我们已经充分感受到此题的不等式十分之紧,故而最好不要进行放缩,在这里,我们证明一个引理。

引理:a%E3%80%81b%E3%80%81c%5Cin%20R,若记%5Csum_%7Bcyc%7D%5E%7B%7Da%3Ds%E3%80%81%5Csum_%7Bcyc%7D%5E%7B%7Dab%3Dq%E3%80%81abc%3Dp%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs-2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D%5Cleq%20p%5Cleq%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D

证明:f(x)%3D(x-a)(x-b)(x-c)%3Dx%5E3-sx%5E2%2Bqx-p

那么,f'(x)%3D3x%5E2-2sx%2Bq,则f(x)(%5Cfrac%7Bs-%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%2C%5Cfrac%7Bs%2B%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%20)上单调递减,在(-%E2%88%9E%2C%5Cfrac%7Bs-%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D)%5Ccup%20(%5Cfrac%7Bs%2B%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%20%2C%2B%E2%88%9E)上单调递增,并在%5Cfrac%7Bs-%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%E4%B8%8E%5Cfrac%7Bs%2B%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D处取到极大值与极小值

因此,存在a%E3%80%81b%E3%80%81c%5Cin%20R%5Ciff%20f(x)%0A有三个实数根(记重根)

%5Ciff%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D-p%5Cgeq%200%E4%B8%94%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs-2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D-p%5Cleq%20%200

%5Ciff%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs-2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D%5Cleq%20p%5Cleq%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D

回到原题,我们的目标是去证明当q%5Cin%20(0%2C3%5D%E6%97%B6%EF%BC%8Cq%5E2%2B2p%5E2%20q%5Cgeq%206p%2B9p%5E2

前文已经做过相同的分析,只需证明p%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D

由引理知%20p%5Cleq%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D%3D%5Cfrac%7B2%7D%7B27%7D(9-3q)%5E%5Cfrac%7B3%7D%7B2%7D%2Bq-2

只需证%20%5Cfrac%7B2%7D%7B27%7D(9-3q)%5E%5Cfrac%7B3%7D%7B2%7D%2Bq-2%20%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D

这个不等式肯定是成立的,而且不需要分类讨论

%5Ciff%20%5B%20%5Cfrac%7B2%7D%7B27%7D(9-3q)%5E%5Cfrac%7B3%7D%7B2%7D%2Bq-2%5D(9-2q)%20%5Cleq-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D

我们考虑函数f(x)%3D%20%5B%20%5Cfrac%7B2%7D%7B27%7D(9-3x)%5E%5Cfrac%7B3%7D%7B2%7D%2Bx-2%5D(9-2x)%20%2B3-%5Csqrt%7B9%2B9x%5E2-2x%5E3%20%7D

目标证明0与3是f(x)%3D0相邻的两个根,从而利用其连续性说明上式成立

我们令f(x)%3D0,并不断化简,最终得到:%5Cfrac%7B256%7D%7B729%7Dx%5E%7B10%7D-%5Cfrac%7B640%7D%7B81%7D%20x%5E9%2B%5Cfrac%7B1904%7D%7B27%7Dx%5E8-%5Cfrac%7B2672%7D%7B9%7Dx%5E7%2B%5Cfrac%7B3748%7D%7B9%7Dx%5E6%2B%5Cfrac%7B3712%7D%7B3%7Dx%5E5-5976x%5E4%2B9072x%5E3%20-4860x%5E2%20%20%3D0

x%5E2(x-3)%5E2(x-%5Cfrac%7B9%7D%7B2%7D%20)%5E2(%5Cfrac%7B256%7D%7B729%7D%20x%5E4-%5Cfrac%7B640%7D%7B243%7Dx%5E3%2B%5Cfrac%7B16%7D%7B9%7D%20x%5E2%2B%5Cfrac%7B544%7D%7B27%7Dx-%5Cfrac%7B80%7D%7B3%7D%20%20)%3D0

我们解四次方程%5Cfrac%7B256%7D%7B729%7D%20x%5E4-%5Cfrac%7B640%7D%7B243%7Dx%5E3%2B%5Cfrac%7B16%7D%7B9%7D%20x%5E2%2B%5Cfrac%7B544%7D%7B27%7Dx-%5Cfrac%7B80%7D%7B3%7D%3D0

%5CDelta%20%3D%5Cfrac%7B4%5E%7B51%7D%5Ctimes797%20%20%7D%7B3%5E%7B59%7D%20%7D%20%EF%BC%9E0,从而方程有两个互异实根与一对共轭虚根

我们只考虑正实根,若记t%3D%5Cfrac%7B%5Cfrac%7B4%5E7%5Ctimes19%20%20%7D%7B3%5E9%20%7D%2B%5Csqrt%5B3%5D%7B%5Cfrac%7B2%5E%7B42%7D%5Ctimes6585%20%20%7D%7B3%5E%7B28%7D%0A%7D%2B%5Cfrac%7B3%7D%7B2%7D%5Csqrt%7B%5Cfrac%7B4%5E%7B51%7D%5Ctimes%20797%20%7D%7B3%5E%7B59%7D%7D%20%7D%20%20%7D%20%20%2B%5Csqrt%5B3%5D%7B%5Cfrac%7B2%5E%7B42%7D%5Ctimes6585%20%20%7D%7B3%5E%7B28%7D%0A%7D-%5Cfrac%7B3%7D%7B2%7D%5Csqrt%7B%5Cfrac%7B4%5E%7B51%7D%5Ctimes%20797%20%7D%7B3%5E%7B59%7D%7D%20%7D%20%20%7D%20%20%7D%7B3%7D%20

x_%7B1%2C2%7D%20%3D%5Cfrac%7B%5Cfrac%7B640%7D%7B243%7D-%5Csqrt%7Bt%7D%5Cpm%5Csqrt%7B%5Cfrac%7B7%5Ctimes%202%5E%7B25%7D%7D%7B3%5E%7B15%7D%C2%B7%5Csqrt%7Bt%7D%20%20%7D%2B%5Cfrac%7B4%5E7%5Ctimes19%20%7D%7B3%5E9%20%7D-t%20%20%7D%20%20%20%20%7D%7B%5Cfrac%7B1024%7D%7B729%7D%20%7D%20

取近似值得到1%EF%BC%9Cx_%7B1%7D%EF%BC%9C2%E3%80%81x_%7B2%7D%EF%BC%9C0

于是,f(x)%3D0的根为(有可能有增根,但0与3是原方程的根)x_%7B1%7D%3Dx_%7B2%7D%3D0%E3%80%81%20%20x_%7B3%7D%3Dx_%7B4%7D%3D3%E3%80%81x_%7B5%7D%3Dx_%7B6%7D%3D%5Cfrac%7B5%7D%7B2%7D%E3%80%811%EF%BC%9Cx_%7B7%7D%EF%BC%9C2%E3%80%81x_%7B8%7D%EF%BC%9C0%20

我们只考虑正实根,他们为3与%5Cxi%20%5Cin%20(1%2C2)

(1) 若%5Cxif(x)%3D0的增根,则0、3是f(x)%3D0相邻的两个根,又f(1)%3D%5Cfrac%7B28%7D%7B9%7D%5Csqrt%7B6%7D-8%EF%BC%9C0,故而在(0%2C3%5D上,连续函数f(x)%5Cleq%200,原不等式得证!

(2)若%5Cxif(x)%3D0的根,分两种情况讨论

①若f(%5Cxi%20)%3Df'(%5Cxi%20)%3D0(即%5Cxi%20是一个极值点,且极值为0):

首先f(x)%E6%98%AF%E5%AE%9A%E4%B9%89%E5%9C%A8(-%E2%88%9E%2C3%5D上的连续函数

f'(x)%3D%5Cfrac%7B3x%5E2-9x%20%7D%7B%5Csqrt%7B9%2B9x%5E2-2x%5E3%20%20%7D%20%7D%20%2B%5Cfrac%7B(10x-39)%5Csqrt%7B9-3x%7D%20%7D%7B9%7D-4x%2B13%20

其中f'(0)%3D0,即0是极值点,而0与%5Cxi%20f(x)%3D0相邻的两个根

若0是极小值点,由f(1)%3D%5Cfrac%7B28%7D%7B9%7D%5Csqrt%7B6%7D-8%EF%BC%9C0f(x)%E5%9C%A8(0%2C1)间有一根,矛盾!

若0是极大值点,%5Cxi%20是极小值点,其与0一定不是相邻的极大值与极小值点,从而0与%5Cxi%20之间一定存在另一个根,矛盾!

那么%5Cxi%20一定是极大值点

我们知道f(1)%3D%5Cfrac%7B28%7D%7B9%7D%5Csqrt%7B6%7D-8%EF%BC%9C0%20%20%E3%80%81f(2)%3D%5Cfrac%7B10%7D%7B9%7D%5Csqrt%7B3%7D%2B3-%5Csqrt%7B29%7D%20%20%EF%BC%9C0%20

由于f(x)%E5%9C%A8(0%2C3%5D上连续,从而%E5%9C%A8(0%2C3%5D%E4%B8%8Af(x)%5Cleq%200

②若f'(%5Cxi%20)%5Cneq%200(即%5Cxi%20非极值点):

先前已经得到f(x)%3D0%E5%9C%A8(1%2C2)上有且仅有一根%5Cxi%20,且f'(%5Cxi%20)%5Cneq%200,则f(1)f(2)%EF%BC%9C0,矛盾!从而这种情况是不存在的

综上,原不等式得证!

实际上,%5Cxi%20是在解方程过程中由于平方而得到的增根,从图像上可以看出来:

x7(点A)是t(x)=0的根而非与f(x)=0等价的s(x)=0的根


spq法的简单运用(三)的评论 (共 条)

分享到微博请遵守国家法律