就 那条 发视频的 一视频 一结论 之证明 飨以诸君

即
不等式
a/sin^mθ+b/cos^mθ
≥
(a^(2/(m+2))+b^(2/(m+2)))^((m+2)/2)
之证明
设
sinθ=p
cosθ=q
有
p²+q²=1
即
-amp^(-m-1)
/
p
=
-bmq^(-m-1)
/
q
即
ap^(-m-2)
=
bq^(-m-2)
即
p=(b/a)^(-1/(m+2))q
即
((b/a)^(-2/(m+2))+1)q²=1
即
q
=
a^(-1/(m+2))
/
(a^(-2/(m+2))+b^(-2/(m+2)))^(1/2)
p
=
b^(-1/(m+2))
/
(a^(-2/(m+2))+b^(-2/(m+2)))^(1/2)
有
a/p^m+b/q^m
即
a/sin^mθ+b/cos^mθ
得
最小值
a(a^(-2/(m+2))+b^(-2/(m+2)))^(m/2)
/
b^(-m/(m+2))
+
b(a^(-2/(m+2))+b^(-2/(m+2)))^(m/2)
/
a^(-m/(m+2))
=
(
a^(2/(m+2))
(a^(-2/(m+2))+b^(-2/(m+2)))^(m/2)
+
b^(2/(m+2))
(a^(-2/(m+2))+b^(-2/(m+2)))^(m/2)
)
/
(ab)^(-m/(m+2))
=
(a^(2/(m+2))+b^(2/(m+2)))
(a^(-2/(m+2))+b^(-2/(m+2)))^(m/2)
/
(ab)^(-m/(m+2))
=
(a^(2/(m+2))+b^(2/(m+2)))
(a^(-2/(m+2))+b^(-2/(m+2)))^(m/2)
/
((ab)^(-2/(m+2)))^(m/2)
=
(a^(2/(m+2))+b^(2/(m+2)))
(a^(-2/(m+2))+b^(-2/(m+2)))^(m/2)
((ab)^(2/(m+2)))^(m/2)
=
(a^(2/(m+2))+b^(2/(m+2)))
(b^(2/(m+2))+a^(2/(m+2)))^(m/2)
=
(a^(2/(m+2))+b^(2/(m+2)))^((m+2)/2)
即
a/sin^mθ+b/cos^mθ
≥
(a^(2/(m+2))+b^(2/(m+2)))^((m+2)/2)
得证
ps.
有关那条
罄竹难书
是那什么
还想立牌坊
肮脏龌龊
腌臜不堪
“秒杀大招”
发视频的
无耻行径
详见
与
与