欢迎光临散文网 会员登陆 & 注册

两个高中物理推论的数学证明

2023-07-11 12:00 作者:げいしも_芸  | 我要投稿

推论一:

对于质地均匀且密度为ρ₀,半径为R的球,其对球外一质点的引力等价于在球心处质量为M(M=4πR³ρ₀/3)的质点对该点的引力

证明:

设该球所占有的空间为:

%5COmega_1%3D%5C%7B(x%2Cy%2Cz)%5Cvert%20x%5E2%2By%5E2%2Bz%5E2%5Cleq%20R%5E2%5C%7D

球外一质点

M_1(0%2C0%2Ca)(a%3ER)

由对称性知其引力在x,y轴上的分量为0,则有:

F_z%3D%5Ciiint%5Climits_%7B%5COmega_1%7D%5Cfrac%7BmG%5Crho_0(z-a)%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%5Cfrac%2032%7D%5Ctext%20dv

%3DGm%5Crho_0%5Cint_%7B-R%7D%5ER(z-a)%5Ctext%20dz%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cleq%20R%5E2-z%5E2%7D%5Cfrac%7B%5Ctext%20dx%20%5Ctext%20dy%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%7B%5Cfrac%2032%7D%7D

对二重积分部分使用极坐标换元,得到:

F_z%3DGm%5Crho_0%5Cint_%7B-R%7D%5E%7BR%7D(z-a)%5Ctext%20dz%5Cint_0%5E%7B2%5Cpi%7D%5Ctext%20d%5Ctheta%5Cint_0%5E%7B%5Csqrt%7BR%5E2-z%5E2%7D%7D%5Cfrac%7B%5Crho%5Ctext%20d%5Crho%7D%7B%5B%5Crho%5E2%2B(z-a)%5E2%5D%5E%5Cfrac%2032%7D

%3D2%5Cpi%20Gm%5Crho_0%5Cint_%7B-R%7D%5E%7BR%7D(z-a)(%5Cfrac%7B1%7D%7Ba-z%7D-%5Cfrac%7B1%7D%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D)%5Ctext%20dz

%3D2%5Cpi%20Gm%5Crho_0%5Cleft%20(%20-2R%2B2R-%5Cfrac%7B2R%5E3%7D%7B3a%5E2%7D%5Cright)

%3D-Gm%5Ccdot%5Cfrac43%5Cpi%20R%5E3%5Crho_0%5Ccdot%20%5Cfrac%201%7Ba%5E2%7D%3D-%5Cfrac%7BGMm%7D%7Ba%5E2%7D

推论一得证.

推论二:

对于一外半径为R,内半径为r(R≥r),质地均匀的空心球体内一点,该空心球体对该质点的引力为0

证明:

设该物体所占有的空间为:

%5COmega_2%3D%5C%7B(x%2Cy%2Cz)%5Cvert%20r%5E2%5Cleq%20x%5E2%2By%5E2%2Bz%5E2%5Cleq%20R%5E2%5C%7D(R%5Cgeq%20r)

内部一质点:

M_2(0%2C0%2Ca)(0%5Cleq%20a%20%5Cleq%20r)

同样由对称性可以知道引力在x,y方向上的分量为0,于是有:

F_z%3D%5Ciiint%5Climits_%7B%5COmega_2%7D%5Cfrac%7BmG%5Crho_0(z-a)%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%7B%5Cfrac%2032%7D%7D%5Ctext%20dv

%3DmG%5Crho_0(I_1%2BI_2%2BI_3)

其中,

I_1%3D%5Cint_%7B-R%7D%5E%7B-r%7D(z-a)%5Ctext%20dz%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cleq%20R%5E2-z%5E2%7D%5Cfrac%7B%5Ctext%20dx%5Ctext%20dy%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%5Cfrac23%7D

I_2%3D%5Cint_%7B-r%7D%5E%7Br%7D(z-a)%5Ctext%20dz%5Ciint%5Climits_%7Br%5E2-z%5E2%5Cleq%20x%5E2%2By%5E2%5Cleq%20R%5E2-z%5E2%7D%5Cfrac%7B%5Ctext%20dx%5Ctext%20dy%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%5Cfrac23%7D

I_3%3D%5Cint_%7Br%7D%5E%7BR%7D(z-a)%5Ctext%20dz%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cleq%20R%5E2-z%5E2%7D%5Cfrac%7B%5Ctext%20dx%5Ctext%20dy%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%5Cfrac23%7D

现对后面的三个二重积分化简

当-R≤z≤-r时

%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cleq%20R%5E2-z%5E2%7D%5Cfrac%7B%5Ctext%20dx%5Ctext%20dy%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%5Cfrac23%7D

%3D%5Cint_0%5E%7B2%5Cpi%7D%5Ctext%20d%5Ctheta%5Cint_0%5E%7B%5Csqrt%7BR%5E2-z%5E2%7D%7D%5Cfrac%7B%5Crho%20%5Ctext%20d%5Crho%7D%7B%5B%5Crho%5E2%2B(z-a)%5E2%5D%5E%5Cfrac%2032%7D%3D2%5Cpi%5Cleft%20(%5Cfrac%7B1%7D%7Ba-z%7D-%5Cfrac%201%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D%5Cright%20)

当-r≤z≤r时

%5Ciint%5Climits_%7Br%5E2-z%5E2%5Cleq%20x%5E2%2By%5E2%5Cleq%20R%5E2-z%5E2%7D%5Cfrac%7B%5Ctext%20dx%5Ctext%20dy%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%5Cfrac%2032%7D

%3D%5Cint_0%5E%7B2%5Cpi%7D%5Ctext%20d%5Ctheta%5Cint_%7B%5Csqrt%7Br%5E2-z%5E2%7D%7D%5E%7B%5Csqrt%7BR%5E2-z%5E2%7D%7D%5Cfrac%7B%5Crho%20%5Ctext%20d%5Crho%7D%7B%5B%5Crho%5E2%2B(z-a)%5E2%5D%5E%5Cfrac%2032%7D%3D2%5Cpi%5Cleft%20(%5Cfrac%7B1%7D%7B%5Csqrt%7Br%5E2-2az%2Ba%5E2%7D%7D-%5Cfrac%201%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D%5Cright%20)

当r≤z≤R时

%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cleq%20R%5E2-z%5E2%7D%5Cfrac%7B%5Ctext%20dx%5Ctext%20dy%7D%7B%5Bx%5E2%2By%5E2%2B(z-a)%5E2%5D%5E%5Cfrac%2032%7D

%3D%5Cint_0%5E%7B2%5Cpi%7D%5Ctext%20d%5Ctheta%5Cint_0%5E%7B%5Csqrt%7BR%5E2-z%5E2%7D%7D%5Cfrac%7B%5Crho%20%5Ctext%20d%5Crho%7D%7B%5B%5Crho%5E2%2B(z-a)%5E2%5D%5E%5Cfrac%2032%7D%3D2%5Cpi%5Cleft%20(%5Cfrac%7B1%7D%7Bz-a%7D-%5Cfrac%201%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D%5Cright%20)

代回原积分表达式得:

I_1%3D2%5Cpi%5Cint_%7B-R%7D%5E%7B-r%7D%5Cleft%20(%20-1-%5Cfrac%20%7Bz-a%7D%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D%5Cright%20)%20%5Ctext%20dz

I_2%3D2%5Cpi%5Cint_%7B-r%7D%5E%7Br%7D%5Cleft%20(%20%5Cfrac%7Bz-a%7D%7B%5Csqrt%7Br%5E2-2az%2Ba%5E2%7D%7D-%5Cfrac%20%7Bz-a%7D%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D%5Cright%20)%20%5Ctext%20dz

I_3%3D2%5Cpi%5Cint_%7Br%7D%5E%7BR%7D%5Cleft%20(%201-%5Cfrac%20%7Bz-a%7D%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D%5Cright%20)%20%5Ctext%20dz

于是得到:

F_z%3DmG%5Crho_0(I_1%2BI_2%2BI_2)

%3D2m%5Cpi%20G%5Crho_0%5Cleft%20(%5Cint_%7B-r%7D%5Er%5Cfrac%7Bz-a%7D%7B%5Csqrt%7Br%5E2-2az%2Ba%5E2%7D%7D%5Ctext%20dz-%5Cint_%7B-R%7D%5ER%20%5Cfrac%7Bz-a%7D%7B%5Csqrt%7BR%5E2-2az%2Ba%5E2%7D%7D%5Ctext%20dz%5Cright%20)

%3D0

推论二得证.

两个高中物理推论的数学证明的评论 (共 条)

分享到微博请遵守国家法律