欢迎光临散文网 会员登陆 & 注册

幅角原理推论:weierstrass preparation theory的一块

2023-07-17 17:59 作者:河中石鱼  | 我要投稿

多元复函数化为一元复函数:f%5Cleft(z%2Cw_%7B1%7D%2Cw_%7B2%7D%2C...%5Cright)%3Df%5Cleft(z%2Cw%5Cright)%3Df_%7Bw%7D%5Cleft(z%5Cright),而函数在%5Cleft%7Cz%5Cright%7C%3Cr上有零元b_%7B1%7D%2C...%2Cb_%7Bd%7D,则%5Csum%7Bb%5E%7Bq%7D%7D%3D%5Cint_%7B%5Cleft%7Cz%5Cright%7C%3Dr%7Dz%5E%7Bq%7D%5Cfrac%7Bf_%7Bw%7D%5E%7B'%7D%5Cleft(z%5Cright)%7D%7Bf_%7Bw%7D%5Cleft(z%5Cright)%7Ddz.


将零元转化为单极点,了解过幅角原理可以理解这一点,因为%5Cfrac%7B1%7D%7Bz-b%7D的系数为要积分的函数在单极点b的留数.回顾复分析内容,零元b的重数按一个一个零元算,f_%7Bw%7D%5Cleft(z%5Cright)%3D%5Cleft(z-b%5Cright)g_%7Bw%7D%5Cleft(z%5Cright)%5CRightarrow%5Cfrac%7Bf_%7Bw%7D%5E%7B'%7D%5Cleft(z%5Cright)%7D%7Bf_%7Bw%7D%5Cleft(z%5Cright)%7D%3D%5Cfrac%7B1%7D%7Bz-b%7D%2B%5Cfrac%7Bg_%7Bw%7D%5E%7B'%7D%5Cleft(z%5Cright)%7D%7Bg_%7Bw%7D%5Cleft(z%5Cright)%7D.注意z%5E%7Bq%7D%3Db%5E%7Bq%7D%2Bqb%5E%7Bq-1%7D%5Cleft(z-b%5Cright)%2B%E2%80%A6,所以z%5E%7Bq%7D%5Cfrac%7Bf_%7Bw%7D%5E%7B'%7D%5Cleft(z%5Cright)%7D%7Bf_%7Bw%7D%5Cleft(z%5Cright)%7D在单极点b的留数为b%5E%7Bq%7D,依据留数定理得到%5Csum%7Bb%5E%7Bq%7D%7D%3D%5Cint_%7B%5Cleft%7Cz%5Cright%7C%3Dr%7Dz%5E%7Bq%7D%5Cfrac%7Bf_%7Bw%7D%5E%7B'%7D%5Cleft(z%5Cright)%7D%7Bf_%7Bw%7D%5Cleft(z%5Cright)%7Ddz.

幅角原理推论:weierstrass preparation theory的一块的评论 (共 条)

分享到微博请遵守国家法律