欢迎光临散文网 会员登陆 & 注册

函数(上)

2023-07-17 17:23 作者:24bs  | 我要投稿

x%2Cy%5Cin%20%5Cmathbb%20Re%5E%7Bx%2B2y%7D-%5Cln(x%2B3y-2)%5Cle%204-y,求 y-x 的值。

%5Ccdots%20%5CLeftrightarrow%20e%5E%7Bx%2B2y%7D-(x%2B2y)%5Cle%20%5Cln(x%2B3y-2)-(x%2B3y-2)%2B2

由于 e%5E%7Bx%2B2y%7D-(x%2B2y)%5Cge%201%5Cln(x%2B3y-2)-(x%2B3y-2)%2B2%5Cle%201,故以上不等号均取等,后略

g(x)%3D%5Clog_2%20%5Cdfrac%7B2x%7D%7Bx%2B1%7D%5C%20(x%3E0)f(x)%3D%7Cg(x)%7C%5E2%2Bm%7Cg(x)%7C%2B3m%2B1,若 f(x) 有三个零点,求 m 的值。

f(x)%3D0 是关于 %7Cg(x)%7C 的一元二次方程。对 g(x) 分析可知其在定义域上单调递增,值域为 (-%5Cinfty%2C2),则一个 %7Cg(x)%7C 若只对应一个 x 当且仅当 x%3D0,由韦达定理即 3m%2B1%3D0

f(x)%3D%5Cdfrac%7B2%5Ex%2Bn%7D%7B2%5Ex%2B2%7D%5Cforall%20a%2Cb%2Cc%5Cin%20%5Cmathbb%20R%2Cf(a)%2Bf(b)%3Ef(c),求 n 取值范围。

%5Ccdots%20%5CLeftrightarrow%202f_%7B%5Cinf%7D%20%5Cge(%5Ctext%7Bor%7D%3E)%5C%20%20f_%7B%5Csup%7D

反解出值域:y%3D%5Cdfrac%7B2%5Ex%2Bn%7D%7B2%5Ex%2B2%7D%5CRightarrow%202%5Ex%3D%5Cdfrac%7B2y-n%7D%7B1-n%7D%3E0%5CRightarrow%20(y-1)(y-%5Cdfrac%7Bn%7D%7B2%7D)%3C0

f(x) 定义域 %5B1%2C%2B%5Cinfty)f(2x)%3D2f(x),且当 x%5Cin%20%5B1%2C2) 时,f(x)%3Dx-1。试判断是否 %5Cexists%20x%5Cin%20%5Cmathbb%20Z%2C%5C%20f(2%5Ex%2B1)%3D8

由归纳法可知 f(2%5Ekx)%3D2%5Ekf(x)%2C%5C%20k%5Cin%20%5Cmathbb%20N%5E*。假设存在这样的 x,分 x%3E0%2Cx%3D0%2Cx%3C0 讨论。若 x%3E0,则 f(2%5Ex%2B1)%3Df(2%5Ex(1%2B2%5E%7B-x%7D))%3D2%5Exf(1%2B2%5E%7B-x%7D),后略;后两种情形略去。总之不存在这样的 x

f(x)%3Dx%5E2%2Bax%2BaA%3D%5C%7Bx%5Cmid%20f(x)%5Cle%20x%5C%7DB%3D%5C%7Bx%5Cmid%20f(f(x))%5Cle%20f(x)%5C%7DA%5Cnot%3D%20%5Cvarnothing%2CA%5Csubseteq%20B,求 a 取值范围。

由 A 非空知 a%5Cin%20(-%5Cinfty%2C3-2%5Csqrt2%5D%5Ccup%20%5B3%2B2%5Csqrt2%2C%2B%5Cinfty);因为 A%5Csubseteq%20B,故满足 f(x)%5Cle%20x 的 x 一定也满足 f(f(x))%5Cle%20f(x)。设 f(x)%5Cle%20x 时 x%5Cin%20%5Bx_1%2Cx_2%5Df(x)%5Cin%20%5By_1%2Cy_2%5D,则需要满足 %5Bx_1%2Cx_2%5D%5Csubseteq%20%5By_1%2Cy_2%5D%5CLeftrightarrow%20y_1%5Cle%20x_1%5Cle%20x_2%5Cle%20y_2。令 f(x)%3Dx 解得 x_1%3D%5Cdfrac%7B1-a-%5Csqrt%7Ba%5E2-6a%2B1%7D%7D%7B2%7Dx_2%3D%5Cdfrac%7B1-a%2B%5Csqrt%7Ba%5E2-6a%2B1%7D%7D%7B2%7D。若 y_1%3Df_%7B%5Cmin%7D%3Df(-%5Cdfrac%7Ba%7D%7B2%7D),则 y_1%5Cge%20x_1;若 y_1%3Df(x_2)%3Dx_2,则y_1%3Dx_2%5Cle%20x_1;否则,y_1%3Df(x_1)%3Dx_1,此时须满足 -%5Cdfrac%7Ba%7D%7B2%7D%5Cle%20x_1,则 a%5Cin%20%5B0%2C6%5D,经检验以上两种情形若能取等亦包括在这种情形当中。故 a%5Cin%20%5B0%2C3-2%5Csqrt2%5D%5Ccup%20%5B3%2B2%5Csqrt2%2C6%5D

x%3E1 时,x%5E%7B-4%7De%5Ex-a%5Cln%20x%5Cge%20x%2B1 恒成立,求 a 取值范围。

  • 法一:%5Ccdots%5CLeftrightarrow%20e%5E%7Bx-4%5Cln%20x%7D%5Cge%20a%5Cln%20x%2Bx%2B1 恒成立。又 e%5E%7Bx-4%5Cln%20x%7D%5Cge%20x-4%5Cln%20x%2B1,故令 x-4%5Cln%20x%2B1%5Cge%20x%2Ba%5Cln%20x%2B1,得 a%5Cle%20-4,取等略。这是原命题成立的充分条件,而必要性通过反证即可得到。

  • 法二:a%5Cle%20%5Cdfrac%7Bx%5E%7B-4%7De%5Ex-x-1%7D%7B%5Cln%20x%7D%5Ctriangleq%20f(x),则 f(x)%3D%5Cdfrac%7Be%5E%7Bx-4%5Cln%20x%7D-x-1%7D%7B%5Cln%20x%7D%5Cge%20%5Cdfrac%7B-4%5Cln%20x%7D%7B%5Cln%20x%7D%3D-4,可取等,故 a%5Cle%20f_%7B%5Cmin%7D%3D-4

f(x)%3D%5Clg(%5Csqrt%7Bx%5E2-2x%2B2%7D-x%2B1)g(x)%3D%5Cdfrac%7B2%5Ex%2B6%7D%7B2%5Ex%2B2%7D,判断以下说法正确性:

A. f(x) 为奇函数

B. g(x) 图像关于点 (1%2C2) 对称

C. F(x)%5Ctriangleq%20f(x)%2Bg(x) 在 x%5Cin%20%5B1-m%2C1%2Bm%5D 上的最大值与最小值之和为 4

D. F(x)%5Ctriangleq%20f(x)%2Bg(x),若 F(a)%2BF(-2a%2B1)%3E4,则 a%5Cin%20(-1%2C%2B%5Cinfty)

算 f(x)%2Bf(2-x) 可知 f(x) 图像关于点 (1%2C0) 对称;事实上,f(0)%5Cnot%3D0,故 A 错误。t%3Dx-1,故 B 正确。令 t%3Dx-1,则 f(x)%3D%5Clg(%5Csqrt%7Bt%5E2%2B1%7D-t)%3D%5Clg(%5Cdfrac%7B1%7D%7B%5Csqrt%7Bt%5E2%2B1%7D%2Bt%7D),求导可得 g(x) 在 %5Cmathbb%20R 上单调递减;g(x)%3D%5Cdfrac%7B2%5Ex%2B6%7D%7B2%5Ex%2B2%7D%3D1%2B%5Cdfrac%7B4%7D%7B2%5Ex%2B2%7D,故 g(x) 在 %5Cmathbb%20R 上单调递减;又由两函数图像的对称性可知 C 正确;D 正确性略。故选 BCD。


函数(上)的评论 (共 条)

分享到微博请遵守国家法律