欢迎光临散文网 会员登陆 & 注册

LyMemory 内核级内存读写驱动

2023-03-15 17:09 作者:孤风洗剑  | 我要投稿


一款完全免费的内核级内存读写工具,可突破驱动保护,强制读写应用层任意进程内存数据,驱动工具目前支持读写整数,字节,字节集,单精度浮点数,双精度浮点数,多级偏移读写,取模块地址,分配远程内存等功能,读写效率高,速度快,兼容性好,使用时需自己签名或在测试模式下。

C++ 调用接口

目前驱动读写支持的读写函数如下表所示,需要注意的是 SwitchDriver 在基础版本中不存在,如需使用请购买 Pro 专业版,专业版与基础版唯一的区别是在读写方式上,专业版具有更强的读写模式,而基础版则只支持 Cr3 读写模式;

导出函数函数作用BOOL SwitchDriver(PCHAR pSwitch)切换内存条模式 (Pro)BOOL SetPid(DWORD Pid)设置全局进程 PIDBOOL Read(ULONG64 address, T* ret)自定义读内存BOOL Write(ULONG64 address, T data)自定义读内存BOOL ReadMemoryDWORD(ULONG64 addre, DWORD * ret)读内存 DWORDBOOL ReadMemoryDWORD64(ULONG64 addre, DWORD64 * ret)读内存 DWORD64BOOL ReadMemoryBytes(ULONG64 addre, BYTE **ret, DWORD sizes)读内存字节BOOL ReadMemoryFloat(ULONG64 addre, float* ret)读内存浮点数BOOL ReadMemoryDouble(ULONG64 addre, double* ret)读内存双精度浮点数BOOL WriteMemoryBytes(ULONG64 addre, BYTE * data, DWORD sizes)写内存字节BOOL WriteMemoryDWORD(ULONG64 addre, DWORD ret)写内存 DWORDBOOL WriteMemoryDWORD64(ULONG64 addre, DWORD64 ret)写内存 DWORD64BOOL WriteMemoryFloat(ULONG64 addre, float ret)写内存浮点数BOOL WriteMemoryDouble(ULONG64 addre, double ret)写内存双精度浮点数DWORD ReadDeviationMemory32(ProcessDeviationMemory *read_offset_struct)计算 32 位偏移数据基址DWORD64 ReadDeviationMemory64(ProcessDeviationMemory *read_offset_struct)计算 64 位偏移数据基址DWORD64 GetModuleAddress(std::string dllname)驱动读取进程模块基地址DWORD64 GetSystemRoutineAddress(std::string funcname)获取系统函数内存地址DWORD64 CreateRemoteMemory(DWORD length)在对端分配内存空间DWORD DeleteRemoteMemory(DWORD64 address, DWORD length)销毁对端内存

新版本读写 API 接口在读写内存之前需要提前设置进程 PID 号,后期的调用将不需要再传入进程 PID,此类读写适合长期读,某些 FPS 射击类游戏的人物数组,3D 类游戏坐标由于坐标会频繁移动,需持续不间断读取,此读写模块将很适,接下来将带大家分析并简单使用这些 API 接口实现功能。

在使用 LyMemoryLib 静态库之前请确保您已经正确的配置了 Visual Studio 引用头文件。

如何安装与卸载驱动: 读写的第一步是安装驱动并将其运行,当然你可以通过第三方组件对驱动进行安装,也可以使用 LyMemoryLib 中的函数实现安装,如下则是通过 LyMemoryLib.hpp 将驱动加载的完整实现;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")// 安装驱动BOOL InstallDriver(LyMemoryDrvCtrl Memory){ char szSysFile[MAX_PATH] = { 0 }; char szSvcLnkName[] = "LyMemory";; BOOL ref = FALSE; DWORD index = 0; // 获取完整路径 Memory.GetAppPath(szSysFile); strcat_s(szSysFile, "LyMemory.sys"); printf("驱动路径: %s \n", szSysFile); index = index + 1; // 安装驱动 ref = Memory.Install(szSysFile, szSvcLnkName, szSvcLnkName); printf("安装状态: %d \n", ref); index = index + 1; // 启动驱动 ref = Memory.Start(); printf("启动状态: %d \n", ref); index = index + 1; // 打开 ref = Memory.Open("\\\\.\\LyMemory"); printf("打开状态: %d \n", ref); index = index + 1; if (index == 4 && ref == TRUE) { return TRUE; } return FALSE; }// 卸载驱动BOOL RemoveDriver(LyMemoryDrvCtrl Memory){ BOOL ref = 0; // 关闭 ref = Memory.Stop(); printf("关闭状态: %d \n", ref); // 移除 ref = Memory.Remove(); printf("移除状态: %d \n", ref); return ref; }int main(int argc, char* argv[]){ LyMemoryDrvCtrl DriveControl; // 加载驱动 BOOL ref = InstallDriver(DriveControl); if (ref == TRUE) { printf("[*] 驱动已加载 \n"); } // 卸载驱动 RemoveDriver(DriveControl); system("pause"); return 0; }

如上代码编译后并以管理员权限运行,则会将驱动 LyMemory.sys 自动加载,并在调试板输出如下图所示的信息;

设置 PID 进程绑定: 如果需要使用读写函数,第一步则是设置进程PID 绑定,通常可通过 SetPid(DWORD Pid) 函数传入进程 PID 进行绑定操作,一旦进程被绑定则后续无需再次打开,提高了读写效率,也可预防多次附加脱离导致应用层异常,如果需要使用设置 PID 则你可以这样来写;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } system("pause"); return 0; }

运行如上代码所示将自动绑定到进程 6536 并输出绑定状态,如下图所示;

内核读取模块基址: 由于目前进程已被附加到到驱动上,此时可以调用 GetModuleAddress() 获取进程内特定模块的基址,此函数接收一个模块名;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 取模块基址 DWORD64 user32 = DriveControl.GetModuleAddress("user32.dll"); printf("user32 = 0x%p \n", user32); DWORD64 kernel32 = DriveControl.GetModuleAddress("kernel32.dll"); printf("kernel32 = 0x%p \n", kernel32); system("pause"); return 0; }

如上代码编译并运行,则取出被附加进程内 user32.dll 以及 kernel32.dll 的模块基址,输出效果图如下所示;

取内核函数基址: 与取应用层模块基址类似,函数 GetSystemRoutineAddress 可用于获取到内核模块中特定导出函数的内存基址。

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 取函数地址 CHAR *SzFunction[3] = { "NtReadFile", "NtClose", "NtSetEvent" }; for (size_t i = 0; i < 3; i++) { DWORD64 ptr = DriveControl.GetSystemRoutineAddress(SzFunction[i]); printf("函数 = %s | 地址 = 0x%p \n", SzFunction[i], ptr); } system("pause"); return 0; }

运行如上方所示的代码片段,则自动取出 "NtReadFile", "NtClose", "NtSetEvent" 三个函数的内存地址,输出效果图如下所示;

分配与释放堆空间: 在对端内存中开辟一段内存可调用 CreateRemoteMemory 函数实现,释放堆空间则可调用 DeleteRemoteMemory 函数,默认情况下分配的空间自带读写执行属性,为 Hook挂钩转向提供可能。

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 分配内存空间 DWORD64 address = DriveControl.CreateRemoteMemory(1024); printf("[+] 已分配内存 = 0x%p \n", address); // 释放内存 BOOL del = DriveControl.DeleteRemoteMemory(address, 1024); if (del == TRUE) { printf("[-] 内存空间 0x%p 已被释放 \n", address); } system("pause"); return 0; }

如上代码片段运行后,将在对端内存中分配 address 的地址,分配后自动将其释放,输出效果图如下所示;

读 / 写内存整数型: 整数类型的读取可调用 ReadMemoryDWORD 读取 32 位整数,调用 ReadMemoryDWORD64 则读取 64 位整数型;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取32位整数 DWORD read_value = 0; BOOL read_flag = DriveControl.ReadMemoryDWORD(0x0188F828, &read_value); if (read_flag == TRUE) { printf("[*] 读取32位数据 = %d \n", read_value); } // 读取64位整数 DWORD64 read64_value = 0; BOOL read64_flag = DriveControl.ReadMemoryDWORD64(0x0188F828, &read64_value); if (read64_flag == TRUE) { printf("[*] 读取64位数据 = %d \n", read64_value); } system("pause"); return 0; }

编译并运行如上代码片段,则会读取 0x0188F828 处的整数类型数据,读取输出效果图如下所示;

写入整数类型同理,调用 WriteMemoryDWORD 写出 32 位整数,调用 WriteMemoryDWORD64 写出 64 位整数;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 写入32位整数 BOOL write32 = DriveControl.WriteMemoryDWORD(0x0188F828, 1000); if (write32 == TRUE) { printf("[+] 写出数据完成 \n"); } // 写入64位整数 BOOL write64 = DriveControl.WriteMemoryDWORD64(0x0188F828, 2000); if (write64 == TRUE) { printf("[+] 写出数据完成 \n"); } system("pause"); return 0; }

编译并运行代码,将向目标进程分别写出 1000 及 2000,代码输出效果如下图所示;

读 / 写内存字节集: 内存读写字节集可调用 ReadMemoryBytes 函数,写出字节集调用 WriteMemoryBytes 函数;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取字节集 BYTE buffer[8] = { 0 }; BYTE* bufferPtr = buffer; BOOL flag = DriveControl.ReadMemoryBytes(0x401000, &bufferPtr, sizeof(buffer)); if (flag == TRUE) { for (int x = 0; x < 8; x++) { printf("[+] 读取字节: 0x%x \n", buffer[x]); } } system("pause"); return 0; }

运行如上代码片段,即可在内存 0x401000 处开始读取字节集,向后读取 8 字节,并存入 buffer 中,输出效果图如下所示;

写出字节集与读取基本一致,函数 WriteMemoryBytes 则用于写出字节集数据,写出是需传递一个定义好的字节数组;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 写内存字节集 BYTE writebuff[4] = { 0x90, 0x90, 0x90, 0x90 }; BOOL flag = DriveControl.WriteMemoryBytes(0x401000, writebuff, sizeof(writebuff)); if (flag == TRUE) { printf("[+] 写出字节集完成 \n"); } system("pause"); return 0; }

运行如上代码片段,则将字节集写出到 0x401000 内存处,写出效果如下图所示;

读 / 写内存浮点数: 浮点数可分为单浮点与双浮点,单浮点可使用 ReadMemoryFloat 实现读写,双浮点则调用 ReadMemoryDouble 实现,两者实现原理完全一致,仅仅只是读写时多出了 4 个字节的宽度而已。

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取单浮点 float read_float = 0; BOOL float_flag = DriveControl.ReadMemoryFloat(0x01894EF8, &read_float); if (float_flag == TRUE) { printf("[+] 读取单精度 = %f \n", read_float); } // 读取双浮点 double read_double = 0; BOOL double_flag = DriveControl.ReadMemoryDouble(0x01894EF8, &read_double); if (double_flag == TRUE) { printf("[+] 读取双精度 = %f \n", double_flag); } system("pause"); return 0; }

运行后输出两个浮点数,注意双精度此处并不是错误而是输出问题,效果图如下所示;

那么如何写出数据呢,只需要调用 WriteMemoryFloat 即可实现写出浮点数的目的;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 写取单浮点 BOOL ref = DriveControl.WriteMemoryFloat(0x01894EF8, 100.245); if (ref == TRUE) { printf("[+] 写出数据完成 \n"); } system("pause"); return 0; }

以单精度浮点数为例,写出数据后输出如下效果;

计算多级偏移动态地址: 函数 ReadDeviationMemory32 可实现动态计算多级偏移的功能,该函数最多可接受 32 级偏移的计算,计算后可得到一个动态地址,用户得到动态地址后可对其地址执行读写整数,字节,字节集,浮点数等各类操作,我们以整数读写为例子;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 计算四级偏移动态地址 ProcessDeviationMemory read_offset_struct = { 0 }; read_offset_struct.Address = 0x6566e0;        // 基地址 read_offset_struct.OffsetSize = 4;            // 偏移长度 read_offset_struct.Data = 0;                  // 读入的数据 read_offset_struct.Offset[0] = 0x18;          // 一级偏移 read_offset_struct.Offset[1] = 0x0;           // 二级偏移 read_offset_struct.Offset[2] = 0x14;          // 三级偏移 read_offset_struct.Offset[3] = 0x0c;          // 四级偏移 // 开始计算 DWORD BaseAddress = DriveControl.ReadDeviationMemory32(&read_offset_struct); printf("[+] 得到动态地址 = 0x%016lx \n", BaseAddress); // 读取整数 DWORD GetDWORD = 0; BOOL flag = DriveControl.ReadMemoryDWORD(BaseAddress, &GetDWORD); if (flag == TRUE) { printf("[+] 读取数据 = %d \n", GetDWORD); } system("pause"); return 0; }

如上代码通过调用 ReadDeviationMemory32 计算出当前动态地址的基址,并通过 ReadMemoryDWORD 读取此处的内存 DWORD 类型,输出效果如下所示;

内存读写反汇编: 读写函数我们可使用 ReadMemoryBytes 实现字节集的读取,通过运用 capstone 反汇编引擎即可对特定内存空间进行反汇编操作;

// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#include <inttypes.h>#include <capstone\capstone.h>#pragma comment(lib,"capstone64.lib")#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(5588); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取前1024个字节 BYTE MyArray[1024] = { 0 }; BYTE* bufferPtr = MyArray; BOOL flag = DriveControl.ReadMemoryBytes(0x401000, &bufferPtr, sizeof(MyArray)); if (flag == TRUE) { printf("[*] 读取完毕 \n"); } csh handle; cs_insn *insn; size_t count; int size = 1023; // 打开句柄 if (cs_open(CS_ARCH_X86, CS_MODE_32, &handle) != CS_ERR_OK) { return 0; } // 反汇编代码,地址从0x1000开始,返回总条数 count = cs_disasm(handle, (unsigned char *)MyArray, size, 0x401000, 0, &insn); if (count > 0) { size_t index; for (index = 0; index < count; index++) { /* for (int x = 0; x < insn[index].size; x++) { printf("机器码: %d -> %02X \n", x, insn[index].bytes[x]); } */ printf("地址: 0x%"PRIx64" | 长度: %d 反汇编: %s %s \n", \ insn[index].address, insn[index].size, insn[index].mnemonic, insn[index].op_str); } cs_free(insn, count); } /* else { printf("反汇编返回长度为空 \n"); } */ cs_close(&handle); system("pause"); return 0; }

运行后即可对进程中 0x401000 的内存区域向下反汇编 1024 个字节,输出效果图如下所示;

项目地址

https://github.com/lyshark/LyMemory


LyMemory 内核级内存读写驱动的评论 (共 条)

分享到微博请遵守国家法律