【种花家务·代数】1-5-05通分『数理化自学丛书6677版』
【阅前提示】本篇出自『数理化自学丛书6677版』,此版丛书是“数理化自学丛书编委会”于1963-1966年陆续出版,并于1977年正式再版的基础自学教材,本系列丛书共包含17本,层次大致相当于如今的初高中水平,其最大特点就是可用于“自学”。当然由于本书是大半个世纪前的教材,很多概念已经与如今迥异,因此不建议零基础学生直接拿来自学。不过这套丛书却很适合像我这样已接受过基础教育但却很不扎实的学酥重新自修以查漏补缺。另外,黑字是教材原文,彩字是我写的注解。
【山话嵓语】我在原有“自学丛书”系列17册的基础上又添加了1册八五人教中学甲种本《微积分初步》,原因有二:一则,我是双鱼座,有一定程度的偶双症,但“自学丛书”系列中代数4册、几何5册实在令我刺挠,因此就需要加入一本代数,使两边能够对偶平衡;二则,我认为《微积分初步》这本书对“准大学生”很重要,以我的惨痛教训为例,大一高数第一堂课,我是直接蒙圈,学了个寂寞。另外大学物理的前置条件是必须有基础微积分知识,因此我所读院校的大学物理课是推迟开课;而比较生猛的大学则是直接开课,然后在绪论课中猛灌基础高数(例如田光善舒幼生老师的力学课)。我选择在“自学丛书”17本的基础上添加这本《微积分初步》,就是希望小伙伴升大学前可以看看,不至于像我当年那样被高数打了个措手不及。
第五章分式
§5-5通分
1、通分的概念
【01】在演算分数加减法的时候,我们需要把两个或两个以上的分数进行通分,使它们变成分母相同而又和原来的分数分别相等的分数。同样,我们在分式的加减运算中,也需要把两个或两个以上的分式变成分母相同而又分别与原来的分式相等的分式,便于加减.这种把两个或两个以上的分式化成分母相同的过程叫做通分。
2、通分的方法
【02】在算术里,通分时要先求出几个分数的分母的最小公倍数,作为这儿个分数的最小公分母,然后应用分数的基本性质,把每一个分数的分子分母,同乘以一个适当的数,使变成与原分数相等而以这个最小公分母做分母的分数。
例1.把分数与
通分。
【解】
先求分母 12 与 18 的最小公倍数:12=2³·3,18=2·3²;∴ 12 与 18 的最小公倍数是2²·3²=36 。这两个分数的最小公分母是 36 。
其次,应用分数的基本性质,把两个分数都变成分母是 36 的分数:
分式的通分方法,也是类似的,举例如下:
例2.把分式 通分 。
【解】
先求三个分式的分母的最低公倍式。因为三个分式的分母都是单项式,所以从观察就可以得到它们的最低公倍式是 3·2³a³bc⁴=24a³bc⁴,24a³bc⁴ 叫做这三个分式的最简公分母。
然后把三个分式都化到与原来的分式相等而分母等于 24a³bc⁴ 的分式,各分式可以同乘以适当的因式,得
【注】通分是和约分相反的一种变换,约分把分子分母的所有公因式约掉,将分式化成较简单的形式。通分是把每一个分式的分子分母同乘以相同的因式,使较简单的分式变为较复杂的形式。约分是对一个分式来说的,通分则总是对两个或两个以上的分式来说的。通分和约分的变换过程,都是根据分式的基本性质来进行的。我们必须保证每一个分式经过变换之后的结果,与原分式相等。
例3.把分式通分。
【解】两个分式的分母都是两项式,而且没有公因式。所以这两个分母的最低公倍式就是它们的积,这个最低公倍式,就是这两个分式的最简公分母。
【说明】在分式里,分母要尽可能写成因式相乘的形式,不要乘起来,分子一般可以乘出来。
例4.通分:。
【解】为了要求这两个分式的最简公分母,先要把两个分式的分母分解因式:
x²-9x+20=(x-5)(x-4);x²-11x+30=(x-5)(x-6) 。
所以最简公分母是 (x-5)(x-4)(x-6) 。通分得
例5.通分: 。
【解】∵ 2-x=(x-2),2+x=x+2,x²-4=(x+2)(x-2);它们的最低公倍式是:(x+2)(x-2) 。∴
【说明】这里分子乘出来较长,不乘出来也可以。在求最简公分母时,负号不必引入。
例6.通分: 。
【解】分母的最低公倍式是 (a-b)(b-c)(c-a) 。∴
【说明】这里分母的三个因式,可以依照 a,b,c 的轮转次序来排,所以得 a-b,b-c,c-a;也可以按照 a,b,c 先后次序排,就得 a-b,b-c,a-c 。我们可以按照任一种次序排,但自己心中必须有一标准,前后一致。
例7.通分:。
【解】先将分母分解因式:
∵
它们的最低公倍式是:xy(x+y)(x-y) 。
∴
习题5-5
通分: