欢迎光临散文网 会员登陆 & 注册

数学物理方法公式(4):留数定理及其应用

2023-03-20 13:35 作者:打电动的阿伟嘻嘻嘻  | 我要投稿

留数的定义:其中%5Cgamma是内含奇点z_0的闭曲线

(1):z_0%5Cin%5Cmathbb%7BC%7D 是 f 的一个孤立奇点, %7B%5Crm%20Res%7D(f%2Cz_0)%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Cgamma%7Df(z)dz.

(2):%5Cinfty 是 f 的一个孤立奇点, %7B%5Crm%20Res%7D(f%2C%5Cinfty)%3D-%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Cgamma%7Df(z)dz.


定理一:f(z)作 Lanurent 展开 f(z)%3D%5Csum_%7Bn%5Cin%5Cmathbb%7BZ%7D%7Dc_n(z-z_0)%5En%2C%5C%20

%7B%5Crm%20Res%7D(f%2Cz_0)%3Dc_%7B-1%7D%2C%5C%20%7B%5Crm%20Res%7D(f%2Cz_0)%3D-c_%7B-1%7D.


定理二:%5C%7Bz_1%2C%5C%20z_2%2C%5C%20%5Ccdots%2C%5C%20z_n%2C%5C%20%5Cinfty%20%5C%7D各不相同且皆为 f 的孤立奇点, 其中 %5Cgamma 是内含奇点%5C%7Bz_1%2C%5C%20z_2%2C%5C%20%5Ccdots%2C%5C%20z_n%20%5C%7D的闭曲线,

%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%7B%5Crm%20Res%7D(f%2Cz_k)%2B%7B%5Crm%20Res%7D(f%2C%5Cinfty)%3D0%2C%5C%20%5Cint_%7B%5Cgamma%7Df(z)dz%3D2%5Cpi%20i%5Csum%5En_%7Bk%3D1%7D%7B%5Crm%20Res%7D(f%2Cz_k).


定理三:z_0是一阶极点, f(z)%3D%5Cfrac%7Bc_%7B-1%7D%7D%7Bz-z_0%7D%2Bc_0%2B%5Ccdots%2C%20

c_%7B-1%7D%3D%5Clim_%7Bz%5Cto%20z_0%7Df(z)(z-z_0).


定理四:f(z)%3D%5Cfrac%7BP(z)%7D%7BQ(z)%7D%2C%5C%20z_0是 Q(z)的一个一阶极点, P(z_0)%5Cneq%200%2C%5C%20

c_%7B-1%7D%3D%5Cfrac%7BP(z_0)%7D%7BQ%5E%7B%5Cprime%7D(z_0)%7D.


定理五:f(z)%3D%5Cfrac%7BP(z)%7D%7BQ(z)%7D%2C%5C%20z_0是 Q(z)的一个m阶极点, P(z_0)%5Cneq%200%2C%5C%20

c_%7B-1%7D%3D%5Cfrac%7B1%7D%7B(m-1)!%7D%5Clim_%7Bz%5Cto%20z_0%7D(%5Cfrac%7Bd%7D%7Bdz%7D)%5E%7Bm-1%7D%5B(z-z_0)%5Emf(z)%5D.

数学物理方法公式(4):留数定理及其应用的评论 (共 条)

分享到微博请遵守国家法律