欢迎光临散文网 会员登陆 & 注册

【哪来的均值不等式?】好好好,这么证是吧

2023-07-13 16:02 作者:Derivitiva  | 我要投稿

已知:(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)%3D10abc%3D6

求值:a(c%2Ba-b)(a%2Bb-c)%2Bb(a%2Bb-c)(b%2Bc-a)%2Bc(b%2Bc-a)(c%2Ba-b)


解:记M%3Da(c%2Ba-b)(a%2Bb-c)%2Bb(a%2Bb-c)(b%2Bc-a)%2Bc(b%2Bc-a)(c%2Ba-b)

注意到:a(c%2Ba-b)(a%2Bb-c)%2Bb(a%2Bb-c)(b%2Bc-a)%2Bc(b%2Bc-a)(c%2Ba-b)%2B(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)%3D4abc

因此有M%2B10%3D24,即原式=M%3D14


注释:

咱说下这个是怎么分解的。

a(c%2Ba-b)(a%2Bb-c)%2Bb(a%2Bb-c)(b%2Bc-a)%2Bc(b%2Bc-a)(c%2Ba-b)%2B(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)

这个式子为a、b、c的三次轮换式。当a%3D0时,

原式=b(b-c)(b%2Bc)%2Bc(b%2Bc)(c-b)%2B(b%2Bc)(c-b)(b-c)

%3D(b%2Bc)(b-c)%5E2-(b%2Bc)(b-c)%5E2%3D0

因此a是原式的一个因式.

由于这个式子为a、b、c的三次轮换式,b、c也一定是原式的因式,所以原式一定是abc的常数倍。四个小式子a(c%2Ba-b)(a%2Bb-c)%2Cb(a%2Bb-c)(b%2Bc-a)%2Cc(b%2Bc-a)(c%2Ba-b)%2C(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)各提供一个abc,所以分解结果就是4abc.


提高难度:

已知条件不变,求%5Cfrac%7Ba%7D%7Bb%2Bc-a%7D%2B%5Cfrac%7Bb%7D%7Bc%2Ba-b%7D%2B%5Cfrac%7Bc%7D%7Ba%2Bb-c%7D的值.

将原式乘上(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)便得上面的M式,因此

%5Cfrac%7BM%7D%7B10%7D%3D%5Cfrac%7Ba%7D%7Bb%2Bc-a%7D%2B%5Cfrac%7Bb%7D%7Bc%2Ba-b%7D%2B%5Cfrac%7Bc%7D%7Ba%2Bb-c%7D,所求为1.4.当然也可以说是通分得到的啦.


【以上这些恐怕还有一丁点正经】

看这个证明:

已知条件不变,判断a、b、c有几个正数,几个负数.

解:不妨设a%3Eb%3Ec,由abc%3E0,可知a%2Cb%2Cc%3E0a%3E0%2Cb%2Cc%3C0

不妨设%5Cfrac%7Ba%7D%7Bb%2Bc-a%7D%3E%5Cfrac%7Bb%7D%7Bc%2Ba-b%7D%3E%5Cfrac%7Bc%7D%7Ba%2Bb-c%7D,三者积定,记作N%3D%5Cfrac%7B3%7D%7B5%7D%3E0,与上文同样,存在“三者都为正数”或者“第一个为正数,后两个为负数”两种情况.

假设这三者都为正数,那么可以运用均值不等式%5Cfrac%7Ba%7D%7Bb%2Bc-a%7D%2B%5Cfrac%7Bb%7D%7Bc%2Ba-b%7D%2B%5Cfrac%7Bc%7D%7Ba%2Bb-c%7D%5Cgeq3%5Csqrt%5B3%5D%7BN%7D%20%3D3%5Csqrt%5B3%5D%7B%5Cfrac%7B3%7D5%7B%7D%7D

而上文已知原式值为1.4,这个值小于3%5Csqrt%5B3%5D%7B%5Cfrac%7B3%7D5%7B%7D%7D,因此不等式一定不成立。假设不成立。

因此%5Cfrac%7Ba%7D%7Bb%2Bc-a%7D%3E0%2C%5Cfrac%7Bb%7D%7Bc%2Ba-b%7D%3C0%2C%5Cfrac%7Bc%7D%7Ba%2Bb-c%7D%3C0.

假设a%2Cb%2Cc%3E0,则b%2Bc-a%3E0%2Cc%2Ba-b%3C0%2Ca%2Bb-c%3C0.

将后两个式子相加,得出2a%3C0,即a%3C0,与假设矛盾.

综上讨论可知,a%3E0%2Cb%2Cc%3C0,也就是,所以a、b、c一正两负.


均值不等式出来那一刻,您是否两眼一亮?嘻嘻,接下来我们讨论一般情况:


《小试牛刀》

已知:abc%3C(b%2Bc-a)(c%2Ba-b)(a%2Bb-c),讨论a、b、c有几个正数,几个负数.

解:

一、0%3Cabc%3C(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)

M%3Da(c%2Ba-b)(a%2Bb-c)%2Bb(a%2Bb-c)(b%2Bc-a)%2Bc(b%2Bc-a)(c%2Ba-b)

并且记(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)%3D%5Calpha%3E0%2Cabc%3D%5Cbeta%3E0

注意到:a(c%2Ba-b)(a%2Bb-c)%2Bb(a%2Bb-c)(b%2Bc-a)%2Bc(b%2Bc-a)(c%2Ba-b)%2B(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)%3D4abc

因此有M%2B%5Calpha%20%3D4%5Cbeta%20,即原式=M%3D4%5Cbeta-%5Calpha.

不妨设a(c%2Ba-b)(a%2Bb-c)%3Eb(a%2Bb-c)(b%2Bc-a)%3Ec(b%2Bc-a)(c%2Ba-b)

这三者的和为M%3D4%5Cbeta-%5Calpha,易得积为N%3D%5Calpha%5E2%5Cbeta%3E0.

三者积为正数,意味着有两种情况:

(1)a(c%2Ba-b)(a%2Bb-c)%3E0%2Cb(a%2Bb-c)(b%2Bc-a)%3E0%2Cc(b%2Bc-a)(c%2Ba-b)%3E0

(2)a(c%2Ba-b)(a%2Bb-c)%3E0%2Cb(a%2Bb-c)(b%2Bc-a)%3C0%2Cc(b%2Bc-a)(c%2Ba-b)%3C0

假设情况1成立,可以运用均值不等式:

M%5Cgeq3%5Csqrt%5B3%5D%7BN%7D,即4%5Cbeta-%5Calpha%5Cgeq3%5Csqrt%5B3%5D%7B%5Calpha%5E2%5Cbeta%7D,两边立方后,可以因式分解

可以得到(%5Calpha-%5Cbeta)(%5Calpha%2B8%5Cbeta)%5E2%5Cleq0,由于%5Calpha%2B8%5Cbeta%3E0,因此%5Calpha%5Cleq%5Cbeta.

因此%5Calpha%3E%5Cbeta时,一定可以推翻情况1.所以,我们已经推翻了情况1.

也就是说 a(c%2Ba-b)(a%2Bb-c)%3E0%2Cb(a%2Bb-c)(b%2Bc-a)%3C0%2Cc(b%2Bc-a)(c%2Ba-b)%3C0

不妨设a%3Eb%3Ec,由已知abc%3E0,又有a%3E0%2Cb%3E0%2Cc%3E0a%3E0%2Cb%3C0%2Cc%3C0两种情况

假设情况1成立,则(c%2Ba-b)(a%2Bb-c)%3E0%2C(a%2Bb-c)(b%2Bc-a)%3C0%2C(b%2Bc-a)(c%2Ba-b)%3C0

将后两个式子相乘,得到(a%2Bb-c)(b%2Bc-a)%5E2(c%2Ba-b)%3E0

将前两个式子、一三两个式子相乘,得%5Calpha(a%2Bb-c)%3C0%2C%5Calpha(c%2Ba-b)%3C0,由%5Calpha正数,

可得:a%2Bb%3Cc%2Cc%2Ba%3Cb.这两式相加,便得2a%3C0,成功推出矛盾.

综上讨论,我们已经证明两次分类讨论的情况1都不成立.

这说明,a%3E0%2Cb%3C0%2Cc%3C0!也就是,a、b、c一定是一正两负!

二、abc%3C(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)%3C0

与上文类似,同理,可以得出答案为两正一负.由对称性即可知,感兴趣的读者可以当作巩固题尝试从头自己证明一次.

三、abc%3C0%3C(b%2Bc-a)(c%2Ba-b)(a%2Bb-c)

可以得出a、b、c为三负或者两正一负.自行尝试证明.



是不是感觉多次亿举啊哈哈哈哈哈.这个证明方法,还是挺巧妙的,虽然在这里用处不大。。直接讨论应该就能解决这个问题了.







【哪来的均值不等式?】好好好,这么证是吧的评论 (共 条)

分享到微博请遵守国家法律