高中数学思想与方法归纳总结(三)
1、分母有理化
朴实无华且枯燥。但分母有理化的思想却可以推广:对于函数单调性判断的分子有理化,复数中虚数分母的分母实数化等等,都能拨开分数的迷雾。 2、化归
对于陌生事物的合理处理方式。看到一串不知所云的等式或不等式,或许当时的你会很慌乱,不知从何处入手。这时,化归也许是一个好的选择,将其用各种手段变成我们所熟悉的式子再进行研究,就会简便不少。 3、放缩法
一种解不等式的方法,简单举例就是要证明A>B的话,先A大于C,再C小于B,再利用传递性得出结论。当然不止于两数之间,有A>B的话,可以有一个数C(C≤B)来得到A<C。这个方法的奥妙就在这个C上,若是合理选择这个C,有时候可以达到“柳暗花明又一村”的效果,十分显著。 4、正难则反
当一道题目从反面思考时,有时会容易很多。像是一个数不可以XXXX,那可以去研究那个数可以XXXX的情况下的情况,然后在全集中剔除这一可以的部分就行了。