45篇Transformer精选论文分享!模型、架构、训练方法一次看完!
今天来聊聊transformer。
得益于ChatGPT的爆火,今年大模型可谓是人工智能领域最热门的研究方向,作为大模型奠基之作的transformer也重新活跃在众人面前,新的研究成果一个接一个出,学姐锐评:卷。
对于刚入门AI的同学来说,transformer是必学的知识点;对于其他人工智能领域的同学来说,transformer更是必须要掌握的基础。
所以学姐这回帮大家整理了transformer相关的论文资料,包括23篇模型相关论文,10篇架构相关论文,8篇预训练后处理,4篇训练方法,方面刚入门的小白快速上手,也方便其他同学梳理自己的知识体系。
论文list如下:
扫码添加小享,回复“精选45”
免费获取全部45篇论文+代码合集

一、模型(23)
GPT
Improving Language Understanding by Generative Pre-Training
GPT-2
Language Models are Unsupervised Multitask Learners
GPT-3
Language Models are Few-Shot Learners
GPT-3.5
Models referred to as"GPT 3.5"
GPT-4
GPT-4 Technical Report
GPT-NeoX
GPT-NeoX-20B: An Open-Source Autoregressive Language Model
GPT-J
Pretrained Models
Gopher
Scaling Language Models: Methods, Analysis & Insights from Training Gopher
AlphaCode
Competition-Level Code Generation with AlphaCode
RETRO
Improving language models by retrievingfrom trillions of tokens
Chinchilla
Training Compute-Optimal Large Language Models
Flamingo
Flamingo: a Visual Language Model for FewShot Learning
Gato
A Generalist Agent
Anthropic LM
A General Language Assistantas a Laboratory for Alignment
PaLM
PaLM: Scaling Language Modeling with Pathways
GLaM
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
LAMDA
LaMDA: Language Models for Dialog Applications
LLaMA
Open and Efficient Foundation Language Models
Switch
Switch Transformers: Scaling to Trillion Parameter Modelswith Simple and Efficient Sparsity
BLOOM
BLOOM: A 176B-Parameter Open-Access MultilingualLanguage Model
Galactica
Galactica: A Large Language Model for Science
OPT
OPT: Open Pre-trained Transformer Language Models
GLM-130B
GLM-130B: AN OPEN BILINGUAL PRE-TRAINEDMODEL
二、架构(10)
多查询注意力
Fast Transformer Decoding: One Write-Head is All You Need
稀疏注意力
Generating Long Sequences with Sparse Transformers
混合专家
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
UNIFIED SCALING LAWS FOR ROUTED LANGUAGE MODELS
Efficient Large Scale Language Modeling with Mixtures of Experts
FlashAttention
FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness
编码器 + 解码器
Attention Is All You Need
平行注意力
PaLM: Scaling Language Modeling with Pathways
RoPE
ROFORMER: ENHANCED TRANSFORMER WITH ROTARYPOSITION EMBEDDING
ALiBi
TRAIN SHORT.TEST LONG: ATTENTION WITH LINEARBIASES ENABLES INPUT LENGTH EXTRAPOLATION
三、预训练后处理(8)
采用 PPO 算法的 RLHF
Deep Reinforcement Learning from Human Preferences
Learning to summarize from human feedback
Constitutional
Constitutional Al: Harmlessness from AI Feedback
Minerva
Solving Quantitative Reasoning Problems with Language Models
Codex
Evaluating Large Language Models Trained on Code
FeedME (SFT)
Training language models to follow instructions with human feedback
Fine-Tuning Language Models from Human Preferences
FLAN
FINETUNED LANGUAGE MODELS ARE ZERO-SHOTLEARNERS
四、训练方法(4)
设置超参数
Training Compute-Optimal Large Language Models
Scaling Laws for Neural Language Models
基于人类反馈的预训练
Pretraining Language Models with Human Preferences
MuP
Tensor Programs V:Tuning Large Neural Networks viaZero-Shot Hyperparameter Transfer
扫码添加小享,回复“精选45”
免费获取全部45篇论文+代码合集
