欢迎光临散文网 会员登陆 & 注册

【趣味数学题】向量拉普拉斯算子

2021-09-20 09:11 作者:AoiSTZ23  | 我要投稿

郑涛(Tao Steven Zheng)著

【问题】

%20%5Cboldsymbol%7BA%7D%20%3D%20P(x%2Cy%2Cz)%20%5Cboldsymbol%7Bi%7D%20%2B%20Q(x%2Cy%2Cz)%20%5Cboldsymbol%7Bj%7D%20%2B%20R(x%2Cy%2Cz)%20%5Cboldsymbol%7Bk%7D%20 为一个向量场(vector field) 具有三维空间中连续二阶偏导数(continuous second partial derivatives)的分量。向量拉普拉斯算子(vector Laplacian operator)定义为 %7B%5Cnabla%7D%5E%7B2%7D%20%5Cboldsymbol%7BA%7D%20%3D%20%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20-%20%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20。求用将 P%2C%20Q%2C%20R 表示的向量拉普拉斯算子。

【题解】

计算出 %20%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)

%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D%20%3D%20P_x%20%2B%20Q_y%20%2B%20R_z

%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20%3D%20%5Cbegin%7Bpmatrix%7D%20P_%7Bxx%7D%20%2B%20Q_%7Byx%7D%20%2B%20R_%7Bzx%7D%20%5C%5C%20P_%7Bxy%7D%20%2B%20Q_%7Byy%7D%20%2B%20R_%7Bzy%7D%20%5C%5C%20P_%7Bxz%7D%20%2B%20Q_%7Byz%7D%20%2B%20R_%7Bzz%7D%20%5Cend%7Bpmatrix%7D


计算出 %5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20

%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20R_y%20-%20Q_z%20%5C%5C%20P_z%20-%20R_x%20%5C%5C%20Q_x%20-%20P_y%20%5Cend%7Bpmatrix%7D

%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20%3D%20%5Cbegin%7Bpmatrix%7D%20Q_%7Bxy%7D%20-P_%7Byy%7D%20-%20P_%7Bzz%7D%20%2B%20R_%7Bxz%7D%20%5C%5C%20-Q_%7Bxx%7D%20%2B%20P_%7Byx%7D%20%2B%20R_%7Byz%7D%20-%20Q_%7Bzz%7D%20%5C%5C%20P_%7Bzx%7D%20-%20R_%7Bxx%7D%20-%20R_%7Byy%7D%20%2B%20Q_%7Bzy%7D%20%5Cend%7Bpmatrix%7D%20

因此,

%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20-%20%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20%3D%20%5Cbegin%7Bpmatrix%7D%20P_%7Bxx%7D%20%2B%20P_%7Byy%7D%20%2B%20P_%7Bzz%7D%20%2B%20(R_%7Bzx%7D%20-%20R_%7Bxz%7D)%20%2B%20(Q_%7Byx%7D%20-%20Q_%7Bxy%7D)%20%5C%5C%20Q_%7Bxx%7D%20%2B%20Q_%7Byy%7D%20%2B%20Q_%7Bzz%7D%20%2B%20(P_%7Bxy%7D%20-%20P_%7Byx%7D)%20%2B%20(R_%7Bzy%7D%20-%20R_%7Byz%7D)%20%5C%5C%20R_%7Bxx%7D%20%2B%20R_%7Byy%7D%20%2B%20R_%7Bzz%7D%20%2B%20(P_%7Bxz%7D%20-%20P_%7Bzx%7D)%20%2B%20(Q_%7Byz%7D%20-%20Q_%7Bzy%7D)%20%5Cend%7Bpmatrix%7D

根据克莱罗混合偏导数定理(Clairaut's theorem of mixed partials),上述向量中的每个括号都等于零;所以,

%20%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20-%20%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20%3D%0A%5Cbegin%7Bpmatrix%7D%20P_%7Bxx%7D%20%2B%20P_%7Byy%7D%20%2B%20P_%7Bzz%7D%20%5C%5C%20Q_%7Bxx%7D%20%2B%20Q_%7Byy%7D%20%2B%20Q_%7Bzz%7D%20%5C%5C%20R_%7Bxx%7D%20%2B%20R_%7Byy%7D%20%2B%20R_%7Bzz%7D%20%5Cend%7Bpmatrix%7D

此表达式可以简约地写成

%7B%5Cnabla%7D%5E%7B2%7D%20%5Cboldsymbol%7BA%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20%7B%5Cnabla%7D%5E%7B2%7D%20P%20%5C%5C%20%7B%5Cnabla%7D%5E%7B2%7D%20Q%20%5C%5C%20%7B%5Cnabla%7D%5E%7B2%7D%20R%20%5Cend%7Bpmatrix%7D




【趣味数学题】向量拉普拉斯算子的评论 (共 条)

分享到微博请遵守国家法律