欢迎光临散文网 会员登陆 & 注册

ApacheCN 机器学习实战讲义 四、朴素贝叶斯

2018-05-01 14:09 作者:绝不原创的飞龙  | 我要投稿

朴素贝叶斯 概述

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。

贝叶斯理论 & 条件概率

贝叶斯理论

我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:

朴素贝叶斯示例数据分布

我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(x,y) 表示数据点 (x,y) 属于类别 2(图中三角形表示的类别)的概率,那么对于一个新数据点 (x,y),可以用下面的规则来判断它的类别: 如果 p1(x,y) > p2(x,y) ,那么类别为1 如果 p2(x,y) > p1(x,y) ,那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

阅读全文:http://ml.apachecn.org/mlia/naive-bayes/

ApacheCN 机器学习实战讲义 四、朴素贝叶斯的评论 (共 条)

分享到微博请遵守国家法律