BV11Z4y1w7Px原理解析
拿第一题举个例。等式两边+k,则
a(n+1)+k=3an+2+k=3(an+(k+2)/3)
a(n+1)+k / an+(k+2)/3 =3
令k=(k+2)/3,解得k=1
所以a(n+1)+1 / an+1=3
所以{an+1}是公比为3的等比数列
an+1=(a1+1)*3^n-1,整理可得an通项公式
推广到一般,给出a1以及a(n+1)=xan+y(x,y为常数)即可求an通项公式
两边+k得
a(n+1)+k=xan+y+k=x(an+(y+k)/x)
a(n+1)+k / an+(y+k)/x =x
令k=y+k/x,解得k=y/x-1
所以{an+y/(x-1)}是公比为x的等比数列
an+y/(x-1)=(a1+y/(x-1))*x^n-1
an=(a1+y/(x-1))*x^(n-1)-y/(x-1)
详见: