2 stage 1-数据准备
if [ $stage -le 1 ]; then
# format the data as Kaldi data directories
for part in dev-clean-2 train-clean-5; do
# use underscore-separated names in data directories.
local/data_prep.sh $data/LibriSpeech/$part data/$(echo $part | sed s/-/_/g)
done
local/prepare_dict.sh --stage 3 --nj 30 --cmd "$train_cmd" \
data/local/lm data/local/lm data/local/dict_nosp
utils/prepare_lang.sh data/local/dict_nosp \
"<UNK>" data/local/lang_tmp_nosp data/lang_nosp
local/format_lms.sh --src-dir data/lang_nosp data/local/lm
# Create ConstArpaLm format language model for full 3-gram and 4-gram LMs
utils/build_const_arpa_lm.sh data/local/lm/lm_tglarge.arpa.gz \
data/lang_nosp data/lang_nosp_test_tglarge
fi

源代码如上,主要的几个sh,分别以子文章的方式发出