欢迎光临散文网 会员登陆 & 注册

麦克斯韦方程组的解

2021-11-07 23:57 作者:偏谬Lyx  | 我要投稿

本文主要讨论如何从已知的场源 %5Crho(%5Cmathbf%7Br%7D%2Ct)%5Cmathbf%7Bj%7D(%5Cmathbf%7Br%7D%2Ct) 来求解电磁场。阅读本文需要具备电动力学和矢量分析的基础知识。

场方程

从麦克斯韦方程组出发,

  1. %5Cnabla%5Ccdot%5Cmathbf%7BE%7D%3D%5Crho%2F%5Cvarepsilon_0

  2. %5Cnabla%5Ccdot%5Cmathbf%7BB%7D%3D0

  3. %5Cnabla%5Ctimes%5Cmathbf%7BE%7D%3D-%5Cpartial_t%5Cmathbf%7BB%7D

  4. %5Cnabla%5Ctimes%5Cmathbf%7BB%7D%3D%5Cmu_0%5C%2C%5Cmathbf%7Bj%7D%2B%5Cmu_0%5Cvarepsilon_0%5C%2C%5Cpartial_t%5Cmathbf%7BE%7D

(2) 式表明,存在矢量场 %5Cmathbf%7BA%7D(%5Cmathbf%7Br%7D%2Ct),使得

%5Cmathbf%7BB%7D%20%3D%20%5Cnabla%20%5Ctimes%20%5Cmathbf%7BA%7D

代入 (3) 式,并交换求导次序可得,

%5Cnabla%5Ctimes%5Cleft(%5Cmathbf%7BE%7D%2B%5Cpartial_t%5Cmathbf%7BA%7D%5Cright)%3D0

上式括号内的部分为无旋场,说明存在标量场 %5Cvarphi(%5Cmathbf%7Br%7D%2Ct),使得

%5Cmathbf%7BE%7D%2B%5Cpartial_t%5Cmathbf%7BA%7D%3D-%5Cnabla%5Cvarphi

于是电磁场可以表示为,

%5Cbegin%7Bcases%7D%0A%5Cmathbf%7BB%7D%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%5Cmathbf%7BE%7D%3D-%5Cnabla%5Cvarphi-%5Cpartial_t%5Cmathbf%7BA%7D%0A%5Cend%7Bcases%7D

其中 %5Cvarphi 为电势,%5Cmathbf%7BA%7D 为磁矢势。将这两个式子代入 (1) (4) 两式,可以得到势场的场方程,

%5Cbegin%7Bcases%7D%0A%5Cnabla%5E2%5Cvarphi%2B%5Cpartial_t%5Cleft(%5Cnabla%5Ccdot%5Cmathbf%7BA%7D%5Cright)%2B%5Crho%2F%5Cvarepsilon_0%3D0%5C%5C%0A%25%0A%5Cnabla%5E2%5Cmathbf%7BA%7D-c%5E%7B-2%7D%5Cpartial_t%5E2%5Cmathbf%7BA%7D-%5Cnabla%5Cleft(%5Cnabla%5Ccdot%5Cmathbf%7BA%7D%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi%5Cright)%2B%5Cmu_0%5C%2C%5Cmathbf%7Bj%7D%3D0%0A%5Cend%7Bcases%7D

其中 c%3D1%2F%5Csqrt%7B%5Cmu_0%5Cvarepsilon_0%7D 为真空中的光速。

容易验证,对任意标量场 %5Clambda(%5Cmathbf%7Br%7D%2Ct),当 %5Cmathbf%7BA%7D%2C%5Cvarphi 进行如下联合变换时,

%5Cbegin%7Bcases%7D%0A%5Cmathbf%7BA%7D'%3D%5Cmathbf%7BA%7D%2B%5Cnabla%5Clambda%5C%5C%0A%25%0A%5Cvarphi'%3D%5Cvarphi-%5Cpartial_t%5Clambda%0A%5Cend%7Bcases%7D

电磁场保持不变。该变换称为规范变换

%5Cbegin%7Bsplit%7D%0A%5Cmathbf%7BB%7D'%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D'%5C%5C%0A%25%0A%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%2B%5Cnabla%5Ctimes%5Cnabla%5Clambda%5C%5C%0A%25%0A%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D%5Cmathbf%7BB%7D%5C%5C%0A%25%0A%5Cmathbf%7BE%7D'%26%3D-%5Cnabla%5Cvarphi'-%5Cpartial_t%5Cmathbf%7BA%7D'%5C%5C%0A%25%0A%26%3D-%5Cnabla%5Cvarphi%2B%5Cnabla%5Cleft(%5Cpartial_t%5Clambda%5Cright)-%5Cpartial_t%5Cmathbf%7BA%7D-%5Cpartial_t%5Cleft(%5Cnabla%5Clambda%5Cright)%20%5C%5C%0A%25%0A%26%3D-%5Cnabla%5Cvarphi-%5Cpartial_t%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D%5Cmathbf%7BE%7D%0A%5Cend%7Bsplit%7D

即 (%5Cmathbf%7BA%7D%2C%5Cvarphi) 和 (%5Cmathbf%7BA%7D'%2C%5Cvarphi') 可以描述同一电磁场。这个性质说明势场方程存在一定的自由度,利用这一点可以将方程化为更简单的形式。假设,

%5Cnabla%5Ccdot%5Cmathbf%7BA%7D%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi%3Df(%5Cmathbf%7Br%7D%2Ct)%5Cneq0

规范变换后变为

%5Cnabla%5Ccdot%5Cmathbf%7BA%7D'%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi'%2Bc%5E%7B-2%7D%5Cpartial_t%5E2%5Clambda-%5Cnabla%5E2%5Clambda-f%3D0

对任意的 f,我们可以通过求解有源波动方程找到 %5Clambda,使其满足

c%5E%7B-2%7D%5Cpartial_t%5E2%5Clambda-%5Cnabla%5E2%5Clambda%3Df

也就是说,我们总能通过规范变换,使得

%5Cnabla%5Ccdot%5Cmathbf%7BA%7D'%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi'%3D0

满足上式要求的势场被称为洛伦兹规范

于是,场方程化为形式上对称的有源波动方程,

%5Cbegin%7Bcases%7D%0Ac%5E%7B-2%7D%5Cpartial_t%5E2%5Cvarphi-%5Cnabla%5E2%5Cvarphi%3D%5Crho%2F%5Cvarepsilon_0%5C%5C%0A%25%0Ac%5E%7B-2%7D%5Cpartial_t%5E2%5Cmathbf%7BA%7D-%5Cnabla%5E2%5Cmathbf%7BA%7D%3D%5Cmu_0%5C%2C%5Cmathbf%7Bj%7D%0A%5Cend%7Bcases%7D

定义达朗贝尔算符(D'Alembert Operator)

%5CBox%3Dc%5E%7B-2%7D%5Cpartial_t%5E2-%5Cnabla%5E2

定义四维矢势和场源,

%5Cbegin%7Balign%7D%0AA_%5Cmu%26%3D%5Cleft(%5Cvarphi%2CA_x%2CA_y%2CA_z%5Cright)%5C%5C%0A%25%0Aj_%5Cmu%26%3D%5Cleft(c%5E2%5Crho%2Cj_x%2Cj_y%2Cj_z%5Cright)%0A%5Cend%7Balign%7D

于是场方程可以简化为,

%7B%5CBox%7DA_%5Cmu%3D%5Cmu_%7B0%7Dj_%5Cmu

有源波动方程

利用傅里叶变换,

%5Cbegin%7Balign%7D%0AA_%5Cmu(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%7BF_%5Cmu%7D(%5Cmathbf%7Br%7D%2C%5Comega)%5C%2C%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5Cnonumber%5C%5C%0A%25%0A%5Cmu_%7B0%7Dj_%5Cmu(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%7BJ_%5Cmu%7D(%5Cmathbf%7Br%7D%2C%5Comega)%5C%2C%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5Cnonumber%0A%5Cend%7Balign%7D

可以得到频域中的方程,

%5Cleft(%5Cnabla%5E2%2Bk%5E2%5Cright)F_%5Cmu%3D-J_%5Cmu

其中 k%20%3D%20%5Comega%20%2F%20c 。利用格林函数来求解,设 G_%5Comega(%5Cmathbf%7Br%7D%2C%5Cmathbf%7Br%7D') 满足,

%5Cleft(%5Cnabla%5E2%2Bk%5E2%5Cright)G_%5Comega(%5Cmathbf%7Br%7D%2C%5Cmathbf%7Br%7D')%3D-%5Cdelta(%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D')

其中 %5Cmathbf%7Br%7D' 为源点,%5Cmathbf%7Br%7D 为场点。形式上可以写出频域中的通解,

F_%5Cmu(%5Cmathbf%7Br%7D%2C%5Comega)%3D%5Cint%7BG_%5Comega%7D(%5Cmathbf%7Br%7D%2C%5Cmathbf%7Br%7D')J_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D

于是问题变为求解 G_%7B%5Comega%7D。对于无界空间的基本解,G_%7B%5Comega%7D 函数应与方向无关,只与源点到场点的距离有关,

%5Cleft(%5Cnabla%5E2%2Bk%5E2%5Cright)G_%7B%5Comega%7D(R)%3D-%5Cdelta(R)

其中 R%3D%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D'%7C。当 %5Comega%20%3D%200%20 时,方程简化为,

%5Cnabla%5E2%20G_0(R)%20%3D%20-%5Cdelta(R)

显然这个方程描述的是点电荷在无界空间中产生的静电势,此时的解为

G_0(R)%3D%5Cfrac%7B1%7D%7B4%7B%5Cpi%7DR%7D

由此我们可以猜测,G_%7B%5Comega%7D 拥有如下形式,

G_%5Comega(R)%3D%5Cfrac%7Bg_%5Comega(R)%7D%7B4%7B%5Cpi%7DR%7D

其中 g_%5Comega 为待定函数,在 %5Comega%20%3D%200%20 时,有 g_0(R)%20%3D%201。当 R%20%3E%200%20 时,我们在以 %5Cmathbf%7Br%7D' 为原点的球坐标中写出方程,

%5Cfrac%7B1%7D%7BR%5E2%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7BR%7D%7D%5Cleft(R%5E2%5Cfrac%7B%5Cpartial%7BG_%5Comega%7D%7D%7B%5Cpartial%7BR%7D%7D%5Cright)%2Bk%5E2%7BG_%5Comega%7D%3D0

化简得到关于 g_%5Comega 的方程,

g_%5Comega''(R)%2Bk%5E2%7Bg_%5Comega%7D(R)%3D0

其解为,

g_%5Comega%5E%5Cpm(R)%3DC%5C%2C%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7DkR%7D%3DC%5C%2C%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D

利用 g_0(R)%20%3D%201%20 可知 C%3D1%20,所以求得格林函数为,

G_%5Comega%5E%5Cpm(R)%3D%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D%7D%7B4%7B%5Cpi%7DR%7D

由此可以求出频域中的两个解,

F_%5Cmu%5E%5Cpm(%5Cmathbf%7Br%7D%2C%5Comega)%3D%5Cint%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D%7D%7B4%7B%5Cpi%7DR%7DJ_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D

再利用傅里叶变换,

%5Cbegin%7Bsplit%7D%0AA_%5Cmu%5E%5Cpm(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%7BF_%5Cmu%5E%5Cpm%7D(%5Cmathbf%7Br%7D%2C%5Comega)%5C%2C%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5Cint%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D%7D%7B4%7B%5Cpi%7DR%7DJ_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cint%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%5Cleft(t%7B%5Cmp%7DR%2Fc%5Cright)%7D%7D%7B4%7B%5Cpi%7DR%7DJ_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5Comega%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7Bj_%5Cmu%5C!%5Cleft(%5Cmathbf%7Br%7D'%2Ct%7B%5Cmp%7DR%2Fc%5Cright)%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%0A%5Cend%7Bsplit%7D

Jefimenko 公式

上一节通过求解有源波动方程得到了数学上的两个解,但在实际的物理场中,场源产生的影响会以光速传播出去,在推迟了 R%2Fc 的时间后到达场点,即 t 时刻的场点由 t-R%2Fc 时刻的场源决定。所以物理解应该采用推迟势(Retarded potential)

A_%5Cmu(%5Cmathbf%7Br%7D%2Ct)%3D%5Cfrac%7B1%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7Bj_%5Cmu%5Cleft(%5Cmathbf%7Br%7D'%2Ct-R%2Fc%5Cright)%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D

可以发现上式与静电场、静磁场的势具有相似的形式。写出电势与磁矢势,分别为,

%5Cbegin%7Balign%7D%0A%5Cvarphi(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cfrac%7B%5Crho_%5Ctext%7Bret%7D(%5Cmathbf%7Br%7D'%2Ct')%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5C%5C%0A%25%0A%5Cmathbf%7BA%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7B%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D(%5Cmathbf%7Br%7D'%2Ct')%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%0A%5Cend%7Balign%7D

其中下标 %20%20%20_%5Ctext%7Bret%7D 表示取推迟时间 t'%3Dt-R%2Fc

接下来通过势场求电磁场。计算如下几项导数,

%5Cnabla%5Crho_%5Ctext%7Bret%7D%3D(%5Cpartial_%7Bt'%7D%5Crho_%5Ctext%7Bret%7D)%5Ccdot%5Cnabla%7Bt'%7D%3D-%5Cfrac%7B%5Cpartial_%7Bt'%7D%5Crho_%5Ctext%7Bret%7D%7D%7Bc%7D%5C%2C%5Cmathbf%7Be%7D_R

%5Cpartial_t%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%3D%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D

%5Cbegin%7Bsplit%7D%0A%5Cnabla%5Ctimes%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%26%3D%5Cepsilon%5E%7Bijk%7D%5C%2C%5Cmathbf%7Be%7D_i%5Cpartial_%7Bj%7D(j_k)_%5Ctext%7Bret%7D%5C%5C%0A%25%0A%26%3D%5Cepsilon%5E%7Bijk%7D%5C%2C%5Cmathbf%7Be%7D_i%5Cpartial_%7Bt'%7D(j_k)_%5Ctext%7Bret%7D%5C%2C%5Cpartial_%7Bj%7Dt'%5C%5C%0A%25%0A%26%3D%20%5Cfrac%7B%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%5Ctimes%5Cmathbf%7Be%7D_R%7D%7Bc%7D%0A%5Cend%7Bsplit%7D

电磁场为,

%5Cbegin%7Bsplit%7D%0A%5Cmathbf%7BE%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D-%5Cnabla%5Cvarphi-%5Cpartial_t%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D-%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft%5B%5Crho_%7B%5Cmathrm%7Bret%7D%7D%5Cnabla%5C!%5Cleft(%5Cfrac1R%5Cright)%2B%5Cfrac%7B%5Cnabla%5Crho_%7B%5Cmathrm%7Bret%7D%7D%7D%7BR%7D%2B%5Cfrac%7B%5Cpartial_t%5C%2C%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%7D%7Bc%5E%7B2%7DR%7D%5Cright%5D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft(%5Cfrac%7B%5Crho_%7B%5Cmathrm%7Bret%7D%7D%7D%7BR%5E2%7D%5Cmathbf%7Be%7D_R%2B%5Cfrac%7B%5Cpartial_%7Bt'%7D%5Crho_%5Ctext%7Bret%7D%7D%7BcR%7D%5Cmathbf%7Be%7D_R-%5Cfrac%7B%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%7D%7Bc%5E2R%7D%5Cright)%5C%5C%0A%25%0A%5Cnewline%0A%25%0A%5Cmathbf%7BB%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft%5B%5Cnabla%5C!%5Cleft(%5Cfrac1R%5Cright)%5Ctimes%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%2B%5Cfrac%7B%5Cnabla%5Ctimes%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%7D%7BR%7D%5Cright%5D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft(%5Cfrac%7B%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%5Ctimes%5Cmathbf%7Be%7D_R%7D%7BR%5E2%7D%2B%5Cfrac%7B%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%5Ctimes%5Cmathbf%7Be%7D_R%7D%7BcR%7D%5Cright)%0A%5Cend%7Bsplit%7D

此即 Jefimenko 公式,是 Coulomb 定律和 Biot-Savart 定律的含时推广。

点电荷

设点电荷电量为 Q,运动轨迹为 %5Cmathbf%7Bs%7D(t')速度为,

 %5Cmathbf%7Bv%7D(t')%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%5C%2C%5Cmathbf%7Bs%7D%7D%7B%5Cmathrm%7Bd%7Dt'%7D

由此可以写出场源的分布,

%5Cbegin%7Bcases%7D%0A%5Crho_%5Ctext%7Bret%7D(%5Cmathbf%7Br%7D'%2Ct')%3DQ%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%5C%5C%0A%25%0A%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%20(%5Cmathbf%7Br%7D'%2Ct')%3DQ%5C%2C%5Cmathbf%7Bv%7D(t')%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%0A%5Cend%7Bcases%7D

设 %5Cmathbf%7By%7D(%5Cmathbf%7Br%7D')%3D%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t'),其单根为 %5Cmathbf%7Br%7D_0',即

%5Cmathbf%7By%7D(%5Cmathbf%7Br%7D_0')%3D%5Cmathbf%7Br%7D_0'-%5Cmathbf%7Bs%7D%5C!%5Cleft(t-%5Cleft%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D_0'%5Cright%7C%2Fc%5Cright)%3D0

利用 delta 函数的性质,

%5Cdelta%5C!%5Cleft%5Bg(x)%5Cright%5D%3D%5Csum_k%5Cfrac%7B%5Cdelta(x-x_k)%7D%7B%5Cleft%7Cg'(x_k)%5Cright%7C%7D

其中 x_k 是 g(x)%3D0 的实单根。对于复合矢量场的情形,分母对应 Jaccobi 行列式在单根处的值,

%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7By%7D(%5Cmathbf%7Br%7D')%5Cright%5D%3D%5Cfrac%7B%5Cdelta(%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D_0')%7D%7B%5Cleft%7C%5Cmathbf%7By%7D'(%5Cmathbf%7Br%7D_0')%5Cright%7C%7D

分母的矩阵元为,

%5Cbegin%7Bsplit%7D%0A%5Cfrac%7B%5Cpartial%7By_i%7D%7D%7B%5Cpartial%7Br'_j%7D%7D%5CBigg%7C_%7B%5Cmathbf%7Br%7D'%3D%5Cmathbf%7Br%7D_0'%7D%26%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7Br'_j%7D%7D%5Cleft%5Br'_i-s_i(t')%5Cright%5D%5CBigg%7C_%7B%5Cmathbf%7Br%7D'%3D%5Cmathbf%7Br%7D_0'%7D%5C%5C%0A%25%0A%26%3D%5Cdelta_%7Bij%7D-%5Cleft(%5Cpartial_%7Bt'%7Ds_i%5Cright)%20%5Cfrac%7Br_j-r'_j%7D%7Bc%5Cleft%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D'%5Cright%7C%7D%5CBigg%7C_%7B%5Cmathbf%7Br%7D'%3D%5Cmathbf%7Br%7D_0'%7D%5C%5C%0A%25%0A%26%3D%5Cdelta_%7Bij%7D-v_i(t')%5Cfrac%7Br_j-s_j(t')%7D%7Bc%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Bs%7D(t')%7C%7D%5C%5C%0A%25%0A%26%3D%5Cdelta_%7Bij%7D-%5Cleft(%5Cfrac%7Bv_%7Bi%7DR_%7Bj%7D%7D%7BcR%7D%5Cright)_%5Ctext%7Bret%7D%0A%5Cend%7Bsplit%7D

将行列式记为 %5Ckappa

%5Cbegin%7Bsplit%7D%0A%5Ckappa%5Cequiv%5Cleft%7C%5Cmathbf%7By%7D'(%5Cmathbf%7Br%7D_0')%5Cright%7C%26%3D1-%5Cdet%5Cleft(%5Cfrac%7Bv_%7Bi%7DR_%7Bj%7D%7D%7BcR%7D%5Cright)_%5Ctext%7Bret%7D%5C%5C%0A%25%0A%26%3D1-%5Cleft(%5Cfrac%7B%5Cmathbf%7Bv%7D%5Ccdot%5Cmathbf%7Be%7D_R%7D%7Bc%7D%5Cright)_%5Ctext%7Bret%7D%0A%5Cend%7Bsplit%7D

于是 delta 函数变为,

%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%3D%5Cfrac%7B%5Cdelta(%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D_0')%7D%7B%5Ckappa%7D

代入推迟势可得,

%5Cbegin%7Balign%7D%0A%5Cvarphi(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cfrac%7BQ%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%20r'%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cleft(%5Cfrac%7BQ%7D%7B%5Ckappa%7BR%7D%7D%5Cright)_%5Ctext%7Bret%7D%5C%5C%0A%25%0A%5Cmathbf%7BA%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7BQ%5C%2C%5Cmathbf%7Bv%7D(t')%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cleft(%5Cfrac%7BQ%5Cmathbf%7Bv%7D%7D%7B%5Ckappa%7BR%7D%7D%5Cright)_%5Ctext%7Bret%7D%0A%5Cend%7Balign%7D

这就是点电荷的 Liénard–Wiechert 势。



麦克斯韦方程组的解的评论 (共 条)

分享到微博请遵守国家法律